Note for readers of this English translation

This document is a summary and has been translated from the Japanese original for reference purpose only. In the event of any discrepancy between this English translation & the Japanese original, the Japanese original shall prevail. Some slides from the original Japanese version have been omitted.

Tour of Shiroi Data Center Campus Outlook for data center market & IIJ's initiatives

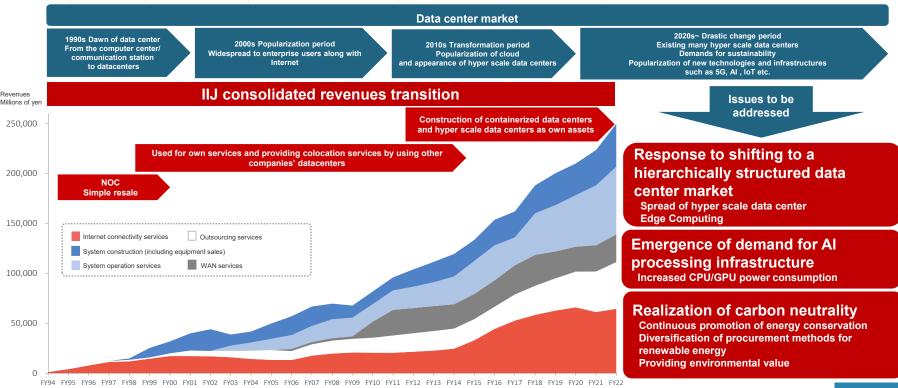
September 29, 2023 Internet Initiative Japan Inc. Isao Kubo General Manager of Infrastructure Service Department

Outlook for data center market & IIJ's initiatives

1. Market trends and business models of data centers

2.IIJ's initiatives for Data Center

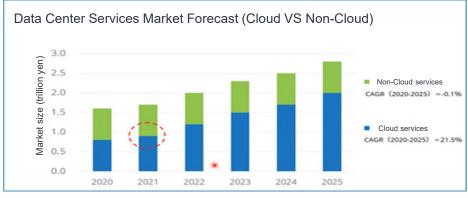
3. Initiatives for carbon neutrality



1. Market trends and business models of data centers

Transformation of the data center market

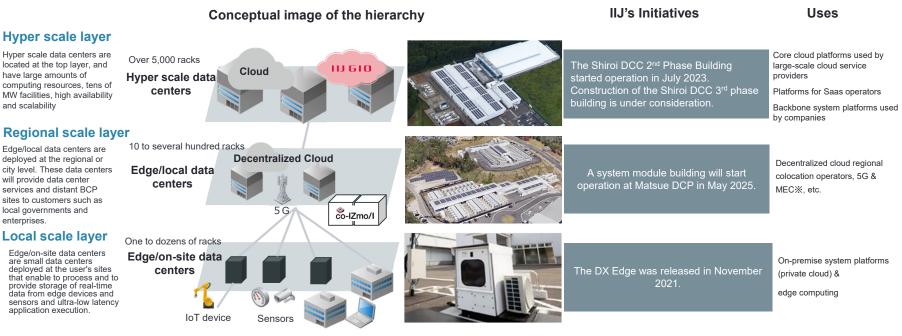
After the spread of cloud/ hyper scale data centers in 2010s, what a data center should be changes along with edge computing, carbon neutrality and AI in 2020s and beyond.


Business models of data centers

1990s Dawn of data center From the computer center/ communication station to datacenters 2000s Popularization period Widespread to enterprise users along with Internet 2010s Transformation period Popularization of cloud and appearance of hyper scale data centers 2020s~ Drastic change period Existing many hyper scale data centers Demands for sustainability Popularization of new technologies and infrastructures such as 5G, AI, IoT etc.

The data center market grew before 2020 with the following applications

- Colocation/housing which provides rack spaces for setting enterprise internal systems
- Hosting services which provides enterprise severs


Colocation/housing market for enterprises remains flat by spread of cloud services. In 2020s and beyond, hyper scale data centers which provide spaces for setting infrastructures of mega cloud enterprises continue to grow strongly.

Source: IDC "Domestic Data Center Services Market Forecast 2020-2025"

Shift to a hierarchically structured data center market

While hyper scale data center facilities are being built as a new business model and cloud services are becoming more multipolar, response times are required to process vast amounts of data, and more processing functions are being demanded at the edge. While economies of scale in facilities are prioritized and the efficiency is increasing, we believe that in a data-driven processing environment, the hierarchization will continue to grow along with the networks that seamlessly connect with these facilities.

*MEC: Short for the Multi-access Edge Computing. One of the edge computing standards that factors in accessibility from local 5G terminals, Wi-Fi devices, IoT devices, etc.

The situation of foreign operators and their impacts

Although many new foreign data center operators will begin operating in FY2024 or later, IIJ's data centers mainly accommodate own facilities and the target of colocation for enterprises is other than mega clouds, so the impact on IIJ's business from the entry of foreign operators will be limited.

DC Operation Status	Market Entry	DC Operators	Target Clients	Traditional markets Clo 2000s (Google
Currently operating	Have been operating DC business in Japan	COLT, Equinix, MCDRT, DigitalEdge (CTC)	Existing customers + GAFA	Mainly 2010s Sat
	New entrant	AirTrunk	GAFA	Future markets Large small- to me
		Google	In-house use	
Will start in the future	New entrant	Other than above	GAFA ?	2020s General com

Conceptual image of target markets

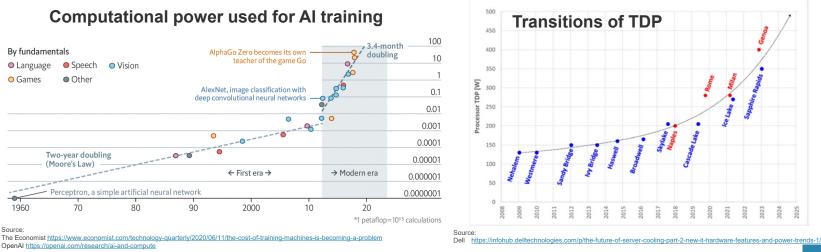
ud operators , Amazon & Microsoft) arge-scale applications

aS operators e-scale applications, dium-sized applications. etc.

panies (private cloud),

Foreign operators that have announced their entry into Japan

Enterprise name	Location	Opening Period	IT load (MW)
AirTrunk	Inzai, Chiba	2021	60MW
	Nishitokyo	Undisclosed	110MW
Colt	Keihanna	2023	45MW
	Inzai, Chiba	2024	20MW
	Tokyo	2025	75MW
Digital Edge	Osaka	2022	14MW
Equinix	Saito, Osaka	2021	14MW
	Inzai, Chiba	2021	54MW
ESR Cayman	Nanko, Osaka	2023	39MW
	Higashikurume, Tokyo	2025	20MW
GLP	Tokyo and Osaka metropolitan area	2024-2028	900MW (50MW×18 locations)
Lendlease	Saitama	2024	-
MCDRT	Saito, Osaka	2023	21MW
Princeton Digital	Saitama	2024	100MW
STT GDC	Inzai, Chiba	2024	60MW
Vantage	Токуо	2024	80MW
	Osaka	2024	40MW
Google	Inzai, Chiba	2023	Undisclosed

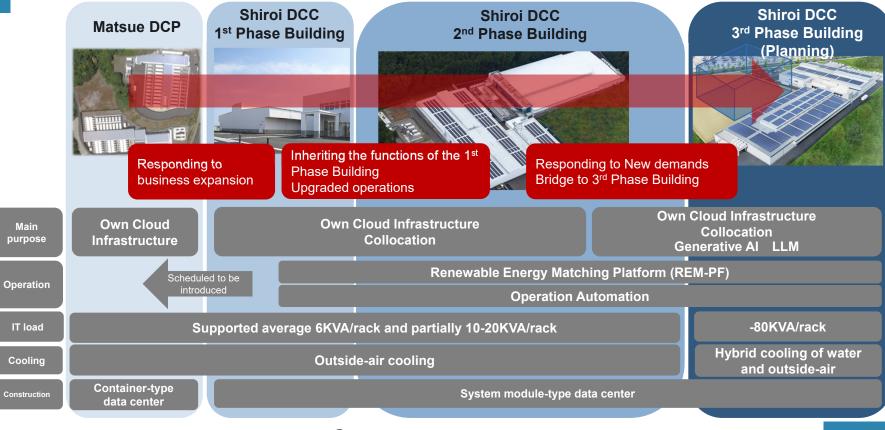

Source: Prepared by IIJ from their press releases, etc.

What is required of data centers in the age of Al

Computational power required for AI training has doubled every 3- 4 months since 2012, far exceeding the 2 years of Moore's law. The demand for AI, represented by ChatGPT, will expand further in the future, and CPU/GPU processing power will be required to increase. And data centers will be required to efficiently install a large number of CPUs/GPUs for AI.

Future data center CPUs (Intel Sapphire Rapids, AMD EPYC) have TDPs (Thermal Design Power) exceeding 300W as processing power increases. CPU TDPs are expected to increase in the future to meet AI demand.

When TDP exceeds 300W, it is said that air-cooling is not sufficient. Future data centers will include NW equipment that needs to be cooled by air, so they must be equipped with hybrid air/water cooling and achieve high energy-saving performance to realize carbon neutrality.


2. IIJ's initiatives for Data Center

History of data center construction and technology demonstration

Transition of IIJ Data Centers and Positioning of the Shiroi DCC 2nd Phase Building

IIJ Data Centers Lineup

Operate and provide data centers ranging from hyper scale to edge data centers

"Shiroi Data Center Campus"

"Shiroi Data Center Campus" was established in Inzai area of Chiba Prefecture, a wellknown data center cluster, as a hyper scale center to meet the explosive growing demands for DC along with the spreads of 5G, IoT, AI and cloud services etc. The 1st phase building begun operations in 2019, and in preparation for further demands growth, the 2nd phase building on the same site began operations in July 2023. The Shiroi Data Center Campus has a site of 40,000m with the maximum capacity of 50 MW.

Edge DC Solution "DX edge"

Data Center Anywhere -A small, refrigerator-sized edge DC facility (micro-DC) that can be installed anywhere indoors or outdoors and safely accommodate and operate servers. IJJ signed a partnership agreement with Zella DC which has over 10 years of history as a micro DC specialized manufacturer in Australia, and IJJ provides turnkey micro DC and servers with managed services including operations.

<Competitive advantages>

- · Use modular structure to reduce construction period and costs
- · Achieve energy savings from outside-air cooling systems
- · Large lithium-ion batteries for peak shifting to reduce costs
- Use AI for integrated control facilities/IT
- · Use robots for operational automation, labor-saving and unmanned operations
- · Direct procurement of non-fossil certificates for supply of green electricity

<Competitive advantages>

 Scalability
 • Can be started on a small scale in a short period of time

 • Ability to expand or relocate to respond to demands

 Operability
 • Centralized operation of servers and DC facilities (remote operation and maintenance by IIJ)

 • Adoption of highly reliable Japanese and U.S. manufacturer components. Plug & Play

 • Low installation cost compared to constructing a server room

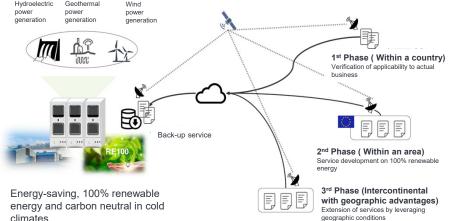
 • Power savings and low operating costs

Effective as next generation server room as well as edge infrastructure

Global Initiatives for GX

IIJ established a micro data center in Iceland and started testing a cross-country back up service with 100% renewable energy in collaboration with power generation company for countries where there are high interests in environmental issues.

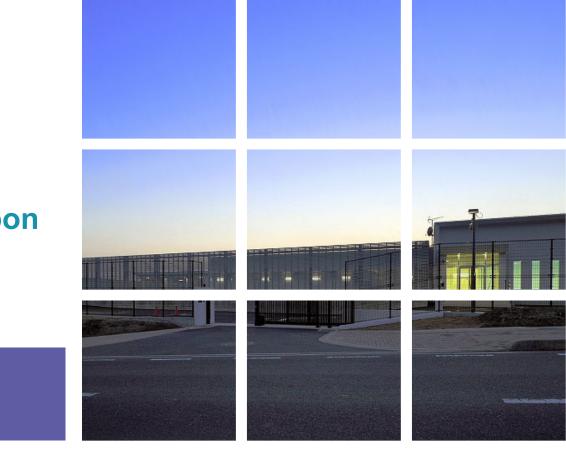
IIJ Group Begins Field Trial of Globally Distributed ICT Infrastructure in Iceland

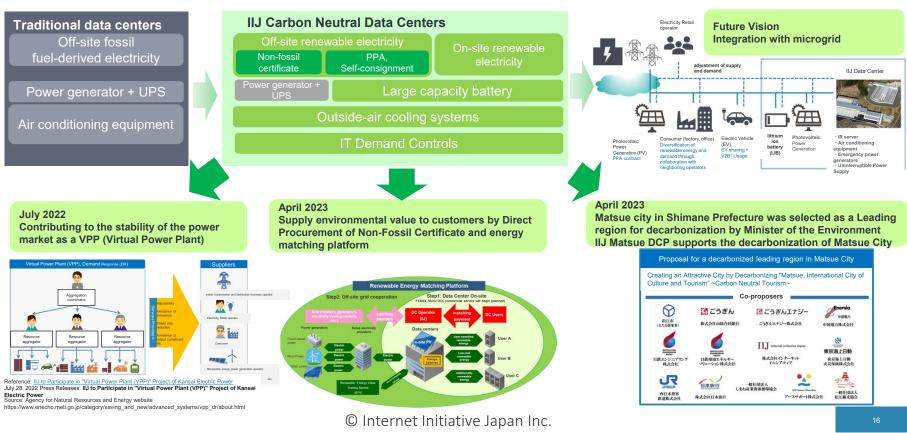

With assistance from the Iceland's national power company, will test operation of a micro data center in an unmanned environment, as a start toward establishing ICT infrastructure achieving global-scale distributed backup


TOKYO – April 18, 2023 - Internet Initiative Japan Inc. (TSE Prime: 3774), one of Japan's leading Internet access and comprehensive network solutions providers, and its wholly owned UK subsidiary IIJ Europe Limited (London), today announced the start of a field trial in Iceland with the cooperation of Landsvirkjun, Iceland's national power company (Reykjavík, Iceland). In the trial taking place from this April to March 2024, a micro data center (MDC) serviced by IIJ is being installed in the Landsvirkjun Írafoss hydropower station in southern Iceland, and testing will be conducted on the way to establishing ICT infrastructure for integrated operation and management of data centers distributed across countries and regions.

Located approximately halfway between the American and European continents, Iceland is geographically well situated to become a North Atlantic communications hub. A further reason for choosing Iceland for the trial is the availability of electric power from 100% renewable energy, which is in line with IIJ initiatives toward achieving carbon neutrality in its own data centers.

An MDC is a data center housing the air conditioning units for server cooling, UPS (uninterruptible power supply), security cameras and other equipment and functions needed in a data center, all in a compact size (height approx. 1 to 2 meters), with the advantage of being installable both indoors and outside. Aims of the field trial include testing the capability of operation in an unmanned environment, without offices in the vicinity, and verifying the market potential for distributed backup across countries and regions, such as in "data embassies" (data storage facilities inside the territory of alliance partners). In this field trial, IIJ Europe will be responsible for remote control of the MDC installed in Iceland, while the IIJ Group as a whole will conduct verifications aimed at value creation through linkage with cloud, IoT and other services.


https://www.iij.ad.jp/en/news/pressrelease/2023/0418.html



3. Initiatives for carbon neutrality

Realization and Future of Carbon Neutral Data Centers

Leveraging data center resources to create new value to customers and society - continue in Shiroi DC 2nd Phase Building

IIJ's initiatives for carbon neutrality: Information Disclosure based on the TCFD (*1) Recommendations

Policy for Greenhouse Gas Reduction Initiatives at IIJ's Own Data Centers

IIJ Group contributes to the reduction of greenhouse gas emissions in society as a whole by improving the efficiency of social activities through the provision of network related services and by sharing computer resources through the provision of cloud services. However, the use of electricity is essential for delivering these services.

IIJ recognizes the importance of reducing greenhouse gas emissions <u>at its own data centers, which consume about 80% of all</u> <u>electricity consumption</u>, by "usage of renewable energy (*2)" and "improvement of energy conservation. "

Measures	Targets	
Usage of renewable energy	The target is to increase the renewable energy usage rate of data centers (Scope 1 and 2 (*3)) to 85% in FY2030.	
Improvement of energy conservation	The target is to keep the PUE (*4) of the data center at or below the industry's highest level (*5) until FY2030 through continuous technological innovation.	

https://www.iij.ad.jp/en/sustainability/materiality01/climate/tcfd/

(*1) TCFD: Task Force on Climate-related Financial Disclosures

(*2) Renewable energy: Including substantial renewable energy through the use of non-fossil fuel certificates

^(*3) Scope 1 and 2 (Greenhouse gas emissions by a company): Direct emissions from the use of fuels and industrial processes at the company and indirect emissions from the use of electricity and heat purchased by the company (as defined by the GHG Protocol)

^(*4) PUE (Power Usage Effectiveness) : Total data center facility energy usage divided by IT equipment energy usage

^(*5) Industry's Highest Level PUE : PUE 1.4 or lower (As of April 2023, the Agency for Natural Resources and Energy has set a benchmark index and target level of PUE as 1.4 or lower in the data center sector, and operators that achieve this are considered excellent energy conservation operators.)

Initiatives for "Use of Renewable Energy": Carbon Neutral Roadmap

Increase the rate of renewable energy early and gradually increase the percentage of renewable energy which has high additionality

FY2022 (The result of renewable energy rate was 46.1% as of March 2023)

Step1: Increase the rate of renewable energy early by utilizing non-fossil certificates/green power certificates, etc.

Step2: Increase the proportion of renewable electricity *1 which has high additionality

Step2-a: Installed cost-effective on-site private power generation at Shiroi DCC/ Matsue DCP

X1 Electricity that encourages the development of new renewable energy generation facilities. For example, the concept of power from new solar power plants as additionality, rather than power from old hydroelectric power plants.

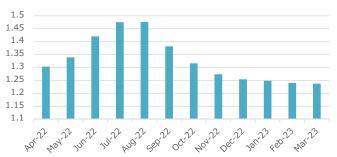
From FY2023 onwards

Shiroi DCC Non-Fossil Certificates Procurement • Increase the rate of renewable energy • Provide customers with renewable energy values

Step2-b:

Promote the procurement of renewable electricity through off-site PPA_{#2} (including self-consignment)

※2 PPA (Power Purchase Agreement):

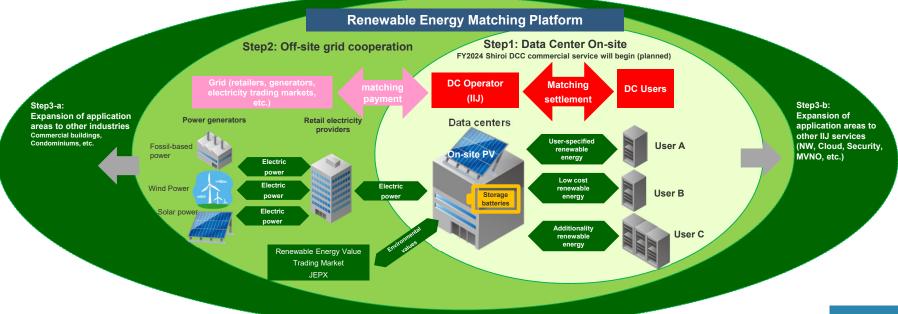

An electricity sales contract between an electricity user (consumer) and an electricity provider (PPA provider) who sells electricity to the consumer.

Initiatives for improvements in energy efficiency: The status of FY2022

Measure	Goals
Use of renewable energy	We aim to raise our data centers' (Scope 1 and 2) renewable energy usage rate to 85% by FY2030.
Improve energy efficiency	Through ongoing technological innovation out to FY2030, we aim to have the PUE readings of our data centers below the industry ceiling.

A benchmark target for data centers was set **PUE of 1.4** by the benchmark system of the "Energy Saving Act."

Both Matsue DCP and Shiroi DCC achieved PUE of 1.3s


FY2022 Matsue PUE (Annual Average: 1.33)

FY2022 Shiroi PUE (Annual average: 1.31)

Providing new values: Responding to an increase in DC users' decarbonization needs

Renewable Energy Matching Platform

Renewable Energy Matching Platform classifies and manages on-site (solar power generation, storage batteries)/off-site renewable energy power, certificates, and other supply-side power, and provides a service of "allocation/proof of use" of power and environmental values in response to user needs and "settlement of transaction" linked to the digital currency DCJPY (tentative name). Considering an environmental value settlement function using a digital currency DCJPY based on P2P tracking system of THE KANSAI ELECTRIC POWER CO., INC. with DeCurret DCP Inc.

Thank you for listening!

Disclaimer

Statements made in this presentation regarding IIJ's or managements' intentions, beliefs, expectations, or predictions for the future are forward-looking statements that are based on IIJ's and managements' current expectations, assumptions, estimates and projections about its business and the industry. These forward-looking statements, such as statements regarding revenues, operating and net profitability are subject to various risks, uncertainties and other factors that could cause IIJ's actual results to differ materially from those contained in any forward-looking statement.