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A Review of Research in System Software 
Communications Since 2010

Figure 1: Structure of Communications Software in a General-purpose OS

2.1 Overview
Network interface cards (NICs) supporting speeds above 

10 Gbps became commonplace in the early 2010s and are 

now widely used in data-center and other applications. 

With the performance of NICs rising, the efficiency of 

the system software that controls this hardware, partic-

ularly its data communications, has become increasingly 

important, and the research community has pursued 

many avenues to improve this performance.

In Section 2.2, I start by looking at the behavior of system 

software when processing communications. Section 

2.3 then summarizes past research aimed at speeding 

this up. With that background in place, Section 2.4 then 

looks at IIJ Research Laboratory’s efforts in this area in 

recent years.

I hasten to add, however, that the efforts described in 

Section 2.4 are still in the research stages and not yet part 

of IIJ’s service infrastructure.

2.2 Main Communications-related Program  
 Behaviors
In Section 2.2.1, I start by walking through communications 

processing in general-purpose OSes, and then in Section 

2.2.2 I discuss communications on virtual machines 

(VMs) commonly used in data centers.

2.2.1 Communications-related Processing in General- 

 purpose OSes

Let’s look at communications processing in a general-pur-

pose OS environment, with reference to Figure 1.

■ Basic system structure

The three main components are (from top to bottom in 

Figure 1):

(1) Application running in user space

(2) The kernel, which implements the network stack 

and device drivers

(3) A NIC, which sends and receives packets.

2. Focused Research (1)
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Figure 2: Processing of Incoming Packets on a General-purpose OS
—Part and Step Indicated at Right

Figure 3: Processing of Outgoing Packets on a General-purpose OS—
Part and Step Indicated at Right

■ Typical loop

Programs, called servers, that respond to client requests 

typically run the following loop: (A) process incoming 

packets in kernel space, (B) perform application-specific 

processing in user space, and (C) process outgoing packets 

in kernel space.

Packet receipt and transmission processing is summarized 

in Figures 2 and 3 by execution context.

■ A: Incoming packet processing in kernel space

□ STEP 1: Hardware (NIC) notifies software

When a NIC receives a new packet, it issues a hardware 

interrupt to the CPU to notify the software. This interrupts 

the program that was running on the CPU and switches 

to the hardware interrupt handler set up by the kernel 

in advance. Hardware interrupt handlers are implementa-

tion-dependent, but it’s fairly common for them to start a 

kernel thread to process incoming packets.

□ STEP 2: Process incoming packets

The kernel thread started to process the incoming packets 

in Step 1 reads the incoming packet headers and processes 

the packets accordingly. For example, if a TCP packet is 

received, it checks the TCP ACK number for the corre-

sponding connection, and adds the packet to the queue of 

the socket associated with that connection.

□ STEP 3: Notify user-space process

In Step 2, when data or a new connection is added to a 

socket queue, if the user-space process/thread associated 

with that socket is waiting (blocking state) for new input 

per the select, poll, epoll_wait, or read family of system 

calls (e.g., read or recvmsg), then the process/thread 

started (unblocked).

■ B: Program processing in user space

□ STEP 1: Awaiting and detecting input events

Many server programs that run in user space stop 

execution (remain in a blocking state) when using select, 

poll, epoll_wait, or read system calls to wait for new input 

to sockets (file descriptors) they are listening on. If input 

is received on a socket, this standby (blocking) state is 

released in Step 3 of A above (incoming packet processing 

in kernel space). Also, when a system call like select, 

poll, or epoll_wait unblock execution and return a value, 

the kernel passes on information about which socket (file 

descriptor) the input event occurred on.

□ STEP 2: Data passed from kernel to user space

The user-space program issues a read system call to 

the socket (file descriptor) on which the input event in 

Step 1 was detected, and then copies the data added 

to the socket queue in Step 2 of A above (incoming 

packet processing in kernel space) from the kernel to 

user space.
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*1 In some cases, a write system call for a TCP socket (file descriptor) may not immediately result in the data specified by the user-space program being transmitted 

by the NIC. Possible reasons for this include the TCP implementation’s congestion control, Nagle’s algorithm waiting for the outgoing buffer to reach a certain size 

as a means of improving performance, and the delay of data transmissions by subsystems such as qdisc, which handles NIC bandwidth control.

□ STEP 3: Application-specific processing

The program performs its application-specific processing 

on the data received in Step 2. For example, a web server 

would parse the received data, determine the content of 

the request, and then generate response data.

□ STEP 4: Tell the kernel to send the data

The program issues a write system call (e.g., write or 

sendmsg) to the socket (file descriptor) that tells the kernel 

to send the data generated in Step 3.

■ C: Outgoing packet processing in kernel space

□ STEP 1: Data passed from user space to kernel

The write system call issued in Step 4 of B switches pro-

cessing to kernel space. The kernel then copies the data 

generated by the user-space program into kernel space 

and adds it to the send queue associated with the socket 

specified by the user-space program.

□ STEP 2: Header processing based on protocol

In the same kernel context as in Step 1, packet headers 

are added to the data to be transmitted if necessary. Once 

the packet is ready and the kernel subsystem determines 

it is okay to transfer the data, it is passed on to the next 

subsystem*1.

□ STEP 3: Data transmitted from the NIC

The data (with header added) is ultimately passed to the 

NIC device driver, and the device driver tells the NIC to 

send the data.

2.2.2 VM Network I/Os

Now let’s look at how communications processing works 

in a VM environment, with reference to Figure 4.

■ Basic systm structure

The four components are (from top to bottom in Figure 4):

(1) Virtual machine (VM)

(2) Virtual NICs assigned to the VM

(3) A host kernel that implements a virtual I/O backend, 

tap devices, virtual switches, and device drivers

(4) A physical NIC.

VM communication functions can be implemented in a 

number of ways, but here I consider a format similar to 

Linux vhost-net, in which threads inside the host kernel 

function as the virtual I/O backend.

Figure 4: Virtual Machine Communications Mechanism
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*2 When a general-purpose OS is running on a VM, the behavior of communication programs within the VM is basically the same as described in Section 2.2.1.

■ Typical loop

On VMs, programs that respond to requests, as discussed 

above, typically run the following loop: (D) process incom-

ing packets for the VM in the host kernel, Parts (A)–(C) as 

described above for general-purpose OSes*2, (E) process 

the VM’s outgoing packets in the host kernel.

Packet receipt and transmission processing is summarized 

in Figures 5 and 6 by execution context.

■ D: Processing incoming packets for the VM

□ STEP 1: Notification from hardware (physical NIC)

The initial processing performed when a packet arrives at 

the physical NIC is the same as in Step 1 of A above. A 

hardware interrupt handler is started in the host kernel, and 

a kernel thread is started to process incoming packets.

□ STEP 2: Incoming packets passed to virtual switch

As in Step 2 of A above, the kernel thread started in Step 

1 processes the received packet, but the processing per-

formed is different from in A above. First, the received 

packet is passed to the virtual switch. The virtual switch 

reads the Ethernet header of the received packet, finds 

the appropriate destination interface for the packet, and 

adds the packet to that interface’s receive queue. Here, 

if the destination interface is a tap device, it starts the 

backend kernel thread that is responsible for virtual I/O 

and associated with that tap device.

□ STEP 3: Pass received data to virtual NIC

The virtual I/O backend kernel thread started in Step 

2 pulls data from a tap device and pushes it to the 

virtual NIC’s receive queue. It then sends an interrupt 

to the VM to notify it that packets were received on 

the virtual NIC.

□ STEP 4: Process incoming packets within the VM

The VM receives the interrupt sent by the host in Step 

3, and processing switches to the interrupt handler set 

up by the kernel within the VM. From this point on, 

processing within the VM follows the process starting 

from Step 1 of A above.

Figure 5: Processing of Incoming Packets on a Virtual Machine
—Part and Step Indicated at Right

Figure 6: Processing of Outgoing Packets on a Virtual Machine
—Part and Step Indicated at Right
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*3 Livio Soares and Michael Stumm. 2010. FlexSC: Flexible System Call Scheduling with Exception-Less System Calls. In 9th USENIX Symposium on Operating Systems 

Design and Implementation (OSDI 10). (https://www.usenix.org/conference/osdi10/flexsc-flexible-system-call-scheduling-exception-less-system-calls).

*4 The idea of reducing context switching by issuing multiple requests in batches had been explored before the advent of FlexFC via a technique called multi-calling 

in compilers*5 and hypervisors*6.

*5 Mohan Rajagopalan, Saumya K. Debray, Matti A. Hiltunen, and Richard D. Schlichting. 2003. Cassyopia: Compiler Assisted System Optimization. In Proceedings 

of the 9th Conference on Hot Topics in Operating Systems - Volume 9 (HotOS ’03), 18. (https://www.usenix.org/conference/hotos-ix/cassyopia-compiler-assist-

ed-system-optimization).

*6 Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. 2003. Xen and the Art of Virtual-

ization. In Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles (SOSP ’03), 164–177. (https://doi.org/10.1145/945445.945462).

program described in Part B above runs its loop. The point 

to note here is that the system calls involve switching the 

user and kernel contexts and are thus CPU-intensive. In 

specific terms, the workloads discussed in Part B involve 

frequent system call invocations: select, poll, and epoll _

wait in Step 1, read system calls in Step 2, and write 

system calls in Step 4. The issue is that this increases 

the amount of time spent on context switching as a 

proportion of the overall program execution time.

■ Issuing multiple system calls at once

In 2010, researchers presented a system called FlexSC*3 

designed to allow multiple processing requests to be 

sent to the kernel at once (batching). To achieve this, 

the system creates a set of memory pages that is shared 

among user and kernel space. To execute a system call, 

user-space threads write the system call and its argu-

ments to the shared memory area, and a kernel thread 

asynchronously executes these calls and returns the 

results. This mechanism eliminates the need for context 

switching on a call-by-call basis. Implementation methods 

differ in their details, but this approach*4 came to be 

widely adopted in efforts to optimize network stack 

implementations, as described in Section 2.3.3.

■ E: Process the VM’s outgoing packets

□ STEP 1: VM sends a transmission request

At this point, the VM has executed Step 3 of C above and 

added the outgoing data to the virtual NIC’s send queue 

via the virtual NIC device driver. Now when the virtual 

NIC is asked to send packets, execution context switches 

from the VM to the host kernel, and the kernel thread for 

virtual I/O is started.

□ STEP 2: Data passed from virtual NIC to tap device

The kernel thread for virtual I/O started in Step 1 above 

pulls data from the virtual NIC’s send queue and pushes 

it to a tap device.

□ STEP 3: Transfer data from tap device to virtual switch

After Step 2, packets are passed through the tap device 

to the virtual switch and transmitted from the interface 

corresponding to the packet’s destination.

2.3 Research Community Efforts
Here, I go over efforts by the research community to speed 

up the workloads discussed in the previous sections.

2.3.1 Reducing System Call Costs

The faster a NIC’s I/O operations, the more frequently 

(to the extent allowed by CPU resources) the user-space 

14
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*7 Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott, Balraj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon Crowcroft. 2013. 

Unikernels: Library Operating Systems for the Cloud. In Proceedings of the Eighteenth International Conference on Architectural Support for Programming Languag-

es and Operating Systems (ASPLOS ’13), 461–472. (https://doi.org/10.1145/2451116.2451167).

*8 Avi Kivity, Dor Laor, Glauber Costa, Pekka Enberg, Nadav Har’El, Don Marti, and Vlad Zolotarov. 2014. OSv - Optimizing the Operating System for Virtual Machines. 

In 2014 USENIX Annual Technical Conference (USENIX ATC 14), 61–72. (https://www.usenix.org/conference/atc14/technical-sessions/presentation/kivity).

*9 Alfred Bratterud, Alf-Andre Walla, Hårek Haugerud, Paal E. Engelstad, and Kyrre Begnum. 2015. IncludeOS: A Minimal, Resource Efficient Unikernel for Cloud 

Services. In 2015 IEEE 7th International Conference on Cloud Computing Technology and Science (CloudCom), 250– 257. (https://doi.org/10.1109/Cloud-

Com.2015.89).

*10 Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuenzer, Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. 2017. My Vm Is 

Lighter (and Safer) Than Your Container. In Proceedings of the 26th Symposium on Operating Systems Principles (SOSP ’17), 218–233. (https://doi.

org/10.1145/3132747.3132763).

*11 Pierre Olivier, Daniel Chiba, Stefan Lankes, Changwoo Min, and Binoy Ravindran. 2019. A Binary-Compatible Unikernel. In Proceedings of the 15th ACM SIGPLAN/

SIGOPS International Conference on Virtual Execution Environments (VEE 2019), 59–73. (https://doi.org/10.1145/3313808.3313817).

*12 Hsuan-Chi Kuo, Dan Williams, Ricardo Koller, and Sibin Mohan. 2020. A Linux in Unikernel Clothing. In Proceedings of the Fifteenth European Conference on Com-

puter Systems (EuroSys ’ 20). (https://doi.org/10.1145/3342195.3387526).

*13 Simon Kuenzer, Vlad-Andrei Bădoiu, Hugo Lefeuvre, Sharan Santhanam, Alexander Jung, Gaulthier Gain, Cyril Soldani, Costin Lupu, Ştefan Teodorescu, Costi Rădu-

canu, Cristian Banu, Laurent Mathy, Răzvan Deaconescu, Costin Raiciu, and Felipe Huici. 2021. Unikraft: Fast, Specialized Unikernels the Easy Way. In Proceedings 

of the Sixteenth European Conference on Computer Systems (EuroSys ’21), 376–394. (https://doi.org/10.1145/3447786.3456248).

*14 Ali Raza, Thomas Unger, Matthew Boyd, Eric B Munson, Parul Sohal, Ulrich Drepper, Richard Jones, Daniel Bristot De Oliveira, Larry Woodman, Renato Mancuso, 

Jonathan Appavoo, and Orran Krieger. 2023. Unikernel Linux (UKL). In Proceedings of the Eighteenth European Conference on Computer Systems (EuroSys ’23), 

590–605. (https://doi.org/10.1145/3552326.3587458).

*15 Ruslan Nikolaev and Godmar Back. 2013. VirtuOS: An Operating System with Kernel Virtualization. In Proceedings of the Twenty-Fourth ACM Symposium on 

Operating Systems Principles (SOSP ’13), 116–132. (https://doi.org/10.1145/2517349.2522719).

*16 Chia-Che Tsai, Kumar Saurabh Arora, Nehal Bandi, Bhushan Jain, William Jannen, Jitin John, Harry A. Kalodner, Vrushali Kulkarni, Daniela Oliveira, and Donald E. 

Porter. 2014. Cooperation and Security Isolation of Library OSes for Multi-Process Applications. In Proceedings of the Ninth European Conference on Computer 

Systems (EuroSys ’14). (https://doi.org/10.1145/2592798.2592812).

*17 Dan Schatzberg, James Cadden, Han Dong, Orran Krieger, and Jonathan Appavoo. 2016. EbbRT: A Framework for Building PerApplication Library Operating 

Systems. In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), 671– 688. (https://www.usenix.org/conference/osdi16/tech-

nical-sessions/presentation/schatzberg).

*18 Yiming Zhang, Jon Crowcroft, Dongsheng Li, Chengfen Zhang, Huiba Li, Yaozheng Wang, Kai Yu, Yongqiang Xiong, and Guihai Chen. 2018. KylinX: A Dynamic 

Library Operating System for Simplified and Efficient Cloud Virtualization. In 2018 USENIX Annual Technical Conference (USENIX ATC 18), 173–186. (https://

www.usenix.org/conference/atc18/presentation/zhang-yiming).

*19 Irene Zhang, Amanda Raybuck, Pratyush Patel, Kirk Olynyk, Jacob Nelson, Omar S. Navarro Leija, Ashlie Martinez, Jing Liu, Anna Kornfeld Simpson, Sujay Jayakar, 

Pedro Henrique Penna, Max Demoulin, Piali Choudhury, and Anirudh Badam. 2021. The Demikernel Datapath OS Architecture for Microsecond-Scale Datacenter 

Systems. In Proceedings of the ACM Sigops 28th Symposium on Operating Systems Principles (SOSP ’21), 195–211. (https://doi.org/10.1145/3477132.3483569).

■ Eliminating the boundary between apps and the kernel

Another approach is to run applications and the OS kernel 

in the same address space, thus eliminating the boundary 

between applications and the kernel. This makes it possi-

ble for application programs to use features implemented 

by the kernel via ordinary function calls rather than sys-

tem calls. This can be done via unikernels*7, which runs all 

programs—including applications and the kernel—in the 

same address space, and library OSes, which implement 

kernel functions as libraries that can run in user space. In 

addition to improved performance due to reduced system 

call context switching costs, unikernels and library OSes 

also offer other notable advantages such as shorter 

startup times for high-demand OS functions in data-cen-

ter environments, reduced memory usage, and improved 

security. This approach has yielded much research and 

a range of implementations, including unikernel systems 

like OSv*8, IncludeOS*9, LightVM*10, HermiTux*11, Lupin 

Linux*12, Unikraft*13, and Unikernel Linux*14, as well as 

library OSes like VirtuOS*15, Graphene*16, EbbRT*17, 

KylinX*18, and Demikernel*19.
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*20 Intel. 2010. Data Plane Development Kit. (https://www.dpdk.org/).

*21 Luigi Rizzo. 2012. Netmap: A Novel Framework for Fast Packet I/O. In 2012 USENIX Annual Technical Conference (USENIX ATC 12), 101–112. (https://www.

usenix.org/conference/atc12/technical-sessions/presentation/rizzo).

*22 When a newly received packet is detected, the data will already be in the packet buffer pasted into the user space, so there is no need to perform the processing 

described in Step 2 of B.

□ STEP 2: Application-specific processing

As in Step 3 of Part B, the program performs applica-

tion-specific processing based on the data received.

□ STEP 3: Transmit data from the NIC

If the application-specific processing requires data to 

be transmitted, the program first populates the outgo-

ing packet buffer that was pasted into user space with 

the data it wants to send, and then uses the interface 

provided by the packet I/O framework to ask the NIC to 

transmit the packets.

□ Caveat

The overall program behavior described above replaces 

all of the processing done in Parts A, B, and C in the 

previous sections and greatly simplifies things by making 

it possible to pass data between the user-space program 

and the NIC extremely quickly. But it must be noted that 

because this does not include protocol-related processing 

as described in Step 2 of A and Step 2 of C, it is not 

possible to run a web server that delivers data via TCP 

connections with this setup as is.

□ Available cost reductions

The details depend on the packet I/O framework imple-

mentation, but with DPDK*20, for example, not only is 

there no intervening protocol-related processing (as 

discussed in the caveat above), other costs that can be 

reduced relative to the general-purpose OS environment 

discussed in Section 2.2.1 include the kernel thread 

2.3.2 More Efficient Packet Passing Between User Space  

 and NICs

With 10Gbps NICs now widespread, it has become difficult 

to achieve wire-rate performance, particularly with 

small packet sizes, with configurations like that illus-

trated in Figure 1.

■ Program behavior

To address this issue, in the early 2010s research-

ers presented packet I/O frameworks like Data Plane 

Development Kit (DPDK)*20 and netmap*21 to enable the 

efficient transfer of data between user space and NICs. 

Packet I/O frameworks have two basic functions:

(1) Paste the NIC’s packet buffer directly into the 

user-space program.

(2) Provide a lightweight interface to allow the user-space 

program to

 a) detect new packets received by the NIC, and

 b) request the NIC to transmit packets.

■ Program behavior

When a user-space program uses these basic packet I/O 

framework functions to perform processing in the manner 

described in Part B above (receiving data and then gener-

ating and sending a response), the behavior is as follows.

□ STEP 1: Detect received packets

The program uses the interface provided by the packet I/O 

framework to detect new packets received by the NIC*22.
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*23 NFV makes it possible to implement network functions in software on commodity hardware, whereas previously you needed to purchase expensive custom hard-

ware appliances for each network function. NFV allows a single computer to be used in multiple applications, and It is considered easier to add/change functions 

with NFV than with custom hardware. The availability of high-speed NICs at low prices, in particular, has likely been a tailwind for the uptake of NFV.

*24 Tom Barbette, Cyril Soldani, and Laurent Mathy. 2015. Fast Userspace Packet Processing. In 2015 ACM/IEEE Symposium on Architectures for Networking and 

Communications Systems (ANCS), 5–16. (https://doi.org/10.1109/ANCS.2015.7110116).

*25 Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang, Aurojit Panda, Sylvia Ratnasamy, Luigi Rizzo, and Scott Shenker. 2015. E2: A Framework for NFV Applica-

tions. In Proceedings of the 25th Symposium on Operating Systems Principles (SOSP ’15), 121–136. (https://doi.org/10.1145/2815400.2815423).

*26 Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia Ratnasamy, and Scott Shenker. 2016. NetBricks: Taking the V Out of NFV. In 12th USENIX Symposium 

on Operating Systems Design and Implementation (OSDI 16), 203–216. (https://www.usenix.org/conference/osdi16/technical-sessions/presentation/panda).

*27 Georgios P. Katsikas, Tom Barbette, Dejan Kostić, Rebecca Steinert, and Gerald Q. Maguire Jr. 2018. Metron: NFV Service Chains at the True Speed of the Under-

lying Hardware. In 15th USENIX Symposium on Networked Systems Design and Implementation (NSDI 18), 171–186. (https://www.usenix.org/conference/nsdi18/

presentation/katsikas).

*28 Aleksey Pesterev, Jacob Strauss, Nickolai Zeldovich, and Robert T. Morris. 2012. Improving Network Connection Locality on Multicore Systems. In Proceedings of 

the 7th ACM European Conference on Computer Systems (EuroSys ’12), 337–350. (https://doi.org/10.1145/2168836.2168870).

*29 Sangjin Han, Scott Marshall, Byung-Gon Chun, and Sylvia Ratnasamy. 2012. MegaPipe: A New Programming Interface for Scalable Network I/O. In 10th USENIX 

Symposium on Operating Systems Design and Implementation (OSDI 12), 135–148. (https://www.usenix.org/conference/osdi12/technical-sessions/presentation/

han).

*30 Xiaofeng Lin, Yu Chen, Xiaodong Li, Junjie Mao, Jiaquan He, Wei Xu, and Yuanchun Shi. 2016. Scalable Kernel TCP Design and Implementation for Short-Lived 

Connections. In Proceedings of the Twenty-First International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS 

’16), 339–352. (https://doi.org/10.1145/2872362.2872391).

scheduling that starts in Step 1 of A, the scheduling 

associated with user-space program startup originating 

in Step 3 of A, and the system calls and associated 

copying of memory between user space and the kernel 

included in Steps 1, 2, and 4 of B.

□ Main use cases

As mentioned in the above caveat, protocol-related pro-

cessing—such as for TCP—is not performed on data that 

the user-space program receives from the NIC. This is 

actually quite useful when network functions such as a 

router are implemented in software, and so packet I/O 

frameworks are widely used in contexts like Network 

Function Virtualization (NFV)*23. The research community, 

for example, has developed packet I/O framework-based 

NFV platforms such as FastClick*24, E2*25, NetBricks*26, 

and Metron*27. Also, as described in the next section, pro-

tocol stacks that run on packet I/O frameworks have been 

developed to enable applications like web servers to be 

used in combination with packet I/O frameworks. Packet 

I/O frameworks are also being used to speed up VM com-

munications, as discussed in Section 2.3.4.

2.3.3 Rethinking Network Stack Design

■ Scaling in multicore environments

Many NICs let you create multiple packet queues to scale 

performance in multicore environments, and dividing 

them up for use by separate CPU cores makes it possi-

ble to avoid lock contention when attempting to access 

the queues. Many high-performance NICs also imple-

ment a feature called Receive Side Scaling (RSS) in 

hardware. RSS allows processing to be distributed by 

steering received packets to specific queues according 

to TCP connection or IP address. It is not enough to 

separate the packet queues, however. There is only one 

queue per socket for newly established TCP connections, 

and performance does not scale if accept system calls 

are issued to the same socket in parallel in a multicore 

environment. To address this, systems such as Affinity-

Accept*28, MegaPipe*29, and Fastsocket*30 offer a means 

of setting up TCP connection queues for each core, and 

it has been shown that this makes it possible to scale 

the performance of accept processing in multicore en-

vironments. MegaPipe*29 also enables batch processing 

inspired by FlexSC*3, which I covered in Section 2.3.1.

■ Use of packet I/O frameworks

Researchers have studied ways of using packet I/O 

frameworks to speed up programs like web servers, as 

mentioned under “Main use cases” in Section 2.3.2. 

Specifically, protocols like TCP/IP have been imple-

mented that can be incorporated into Step 2 under 

“Program behavior” in Section 2.3.2, and this makes it 

possible to eliminate processing costs as mentioned in 
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in the kernel by using the kernel implementation for TCP/

IP protocol-related processing like that in Step 2 of A and 

Step 2 of C. In 2019, researchers announced a TCP stack 

implementation called TAS*37, which also uses DPDK*20 

and operates in user space. In 2022, researchers pre-

sented a system called zIO*39 that extends TAS*37 and the 

Strata*38 file system and makes it possible to eliminate 

I/O-related memory copying without making changes to 

existing applications. Researchers have also looked at 

ways of optimizing the allocation of CPU cores to tasks 

in order to achieve the low levels of communications la-

tency required in data-center settings, as demonstrated 

by systems like ZygOS*40, Shenango*41, Shinjuku*42, and 

Caladan*43. These systems also employ a TCP/IP stack 

running on top of DPDK*20.

“Available cost reductions” in that section, resulting in 

significant speed increases. In 2014, researchers pre-

sented user-space network stacks called Sandstorm*31 

and mTCP*32. mTCP*32 offers a number of optimizations. 

In addition to request batching as proposed in FlexSC*3, it 

also divides TCP connection queues among CPU cores as 

in Affinity-Accept*28 and MegaPipe*29, which I mentioned 

in Section 3.3.1. Also in 2014, researchers presented 

new OSes called Arrakis*33 and IX*34 designed to make it 

faster to use devices. Both of these allow a network stack 

based on a TCP/IP implementation called lwIP*35 to deliver 

I/O directly to the NIC. In 2016, researchers presented a 

system called StackMap*36 that uses a packet I/O frame-

work to adopt the program behavior described in Section 

2.3.2 for packet sending/receiving while also offering 

the benefits of the full-featured TCP/IP implementation 
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■ Offloading processing to hardware

The sort of processing involved in TCP, such as connec-

tion state management, is relatively complex, putting 

high loads on the CPU, so researchers have also ex-

plored an approach known as the TCP Offload Engine 

(TOE) for offloading such processing to hardware de-

vices like NICs. In 2020, researchers presented a system 

called Accell TCP*44, which allows processing related to 

certain states—such as establishing TCP connections—

to be offloaded to the NIC, making it possible to perform 

connection splicing and other such processing at high 

speed. The researchers showed that this can mainly help 

improve the performance of L7 load balancers. Also in 

2020, researchers presented Tonic*45, a hardware de-

sign that enables the implementation of transport layer 

protocols in the NIC. In 2022, researchers unveiled 

FlexTOE*46, a TOE implementation that runs on smart 

NICs, and 2023 saw researchers present IO-TCP*47, a 

system in which the NIC, in addition to performing TCP 

processing, is given direct access to storage hardware 

to streamline content delivery workloads.

2.3.4 Speeding up VM Communications

As Figure 4 shows, the main software components in 

VM communications are virtual switches that multiplex 

packet input/output on physical NICs, and a backend 

that handles virtual NIC emulation. In this section, I go 

over efforts to optimize these two components.

■ Speeding up virtual switches

Packet I/O frameworks, which I mentioned in Section 

2.3.2, have had a huge impact in speeding up virtual 

switches, and research has shown that applying packet 

I/O frameworks around virtual switches can improve 

performance significantly relative to conventional ap-

proaches. In the case of VM I/O as discussed in Section 

2.2.2, virtual switches run in Step 2 of D and Step 3 of E, 

so improving virtual switch performance can be a huge 

help in enhancing VM communications performance. On 

the research front, in 2012 researchers presented a vir-

tual switch called VALE*48 that can run on the netmap*21 

API mentioned in Section 2.3.2, and 2013 saw the un-

veiling of CuckooSwitch*49, which uses DPDK*20. And in 
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QEMU*52/KVM*56, and showed that on ptnetmap, VMs 

can achieve the 10Gbps wire rate of 14.88Mpps with 

the smallest possible packet size. In 2014, researchers 

also presented ClickOS*57, which uses VMs and replaces 

netfront/netback, the VM communications mechanism 

used in Xen*6, with a communications mechanism based 

on VALE*48 and the netmap*21 API in order to speed up 

communications throughput on NFV platforms. Also in 

2014, researchers presented NetVM*58, an NFV platform 

based on VMs, which uses DPDK*20 and QEMU*52/KVM*56 

to speed up VM communications throughput. In 2017, 

researchers presented a framework called HyperNF*59, 

which, even in VM environments that use VALE*48, ad-

dresses the problem of suboptimal CPU utilization due 

to the separation of the kernel threads running on the 

host side as described in Step 2 of E and the threads 

run on the VM’s virtual CPU. It does this by performing 

the sort of virtual switch processing that happens on 

VALE*48 within hypercalls that place it inside the virtual 

CPU’s execution context. The researchers showed that 

the increased efficiency of CPU utilization resulted in 

high VM communications throughput.

2015, researchers presented mSwitch*50 as an extension 

of VALE*48. Work to add support for DPDK*20 to Open 

vSwitch*51, a widely used virtual switch implementation, 

was also underway around this time.

■ Improvements to the virtual I/O backend

Around 2013, researchers made attempts to use virtual 

switches like that described above under “Speeding up 

virtual switches” in the VM communications backend. 

One of these attempts uses VALE*48 as the network 

backend on QEMU*52. Specifically, it replaces the ex-

isting virtual switch implementation in the OS kernel 

shown in Figure 2 with the VALE*48 switch, and the 

researchers showed that this can improve VM I/O per-

formance*53. With this optimization, however, the virtual 

NIC assigned to the VM was of the existing type and 

thus not all that compatible with VALE*48. The drawback 

here was that, in Step 2 of D and Step 2 of E, it was 

unable to eliminate the copying of packet data mem-

ory between the virtual switch and the virtual NIC, so 

room to improve performance remained. To fill the gap, 

in 2015 researchers implemented ptnetmap*54*55, which 

assigns netmap*21 interfaces directly to the VM, for 
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■ Offloading processing to hardware

Many NICs implement a hardware packet switching func-

tion like Single Root I/O Virtualization (SR-IOV)*60, and 

using this can often produce better performance than a 

virtual switch implementation in software. Yet SR-IOV*60 

only provides limited behavioral control of packet for-

warding between physical and virtual interfaces from 

software, which can impede its usefulness in settings 

where fine-grained control is needed, such as data cen-

ters. To address this, in 2018 researchers published a 

paper on AccelNet*61, a system that uses smart NICs to 

enable more flexible network control (the deployment 

of AccelNet in commercial environments had apparently 

begun in 2015).

2.4 Recent Work at IIJ Research Laboratory
In this section, I explain what sort of efforts IIJ Research 

Laboratory is undertaking based on the past research 

covered above.

2.4.1 Integrating New OS Features and Existing Programs

As the preceding section illustrates, for over a decade 

now the research community has been proposing designs 

and implementations of new OS features that would re-

place existing mechanisms.

■ Problem

System call hooking is commonly used to apply new OS 

features transparently to existing application programs. 
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at virtual memory address 0, thus replacing syscall/

sysenter calls in the program with jumps to specific 

hook processing routines. We found this mechanism to 

produce loads 28–700x lower than conventional mecha-

nisms, such as binary rewriting techniques that use int3 

instructions, ptrace, and Syscall User Dispatch*64. Also, 

when we used these techniques to apply lwIP*35 and 

DPDK*20 with Redis*65, a widely used key-value store, we 

found that, relative to when there is almost no load from 

system hooks, the conventional mechanisms caused a 

72.3–98.8% load degradation vs. only a 5.2% degradation 

with our proposed method.

2.4.2 Speeding up VM I/O

The communications performance of VMs has improved 

significantly over the last decade. Yet challenges remain.

■ Problem

The cost of exiting a VM context is considered to be a 

cause of performance degradation in VM environments 

But the existing system call hook mechanism does have 

its drawbacks: it can cause significant application per-

formance degradation, and some system call hooks 

can fail. These shortcomings limit the applicability of 

unikernels, library OSes, and new network stack imple-

mentations like those discussed in previous sections, 

which, as a result, prevents many people from enjoying 

the benefits of the research work that has been done. 

This problem makes it difficult to use existing technol-

ogies that could greatly improve software execution 

efficiency, which would reduce the number of servers 

needed and cut power consumption.

■ Solution

To solve this problem, we devised a new system call hook 

mechanism called zpoline*62*63 that addresses the existing 

mechanism’s drawbacks. zpoline*62*63 replaces the sy-

scall and sysenter instructions, which are two bytes 

and used to issue system calls, with callq *%rax call 

instructions (also two bytes) and sets up trampoline code 
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that has yet to be eliminated. In specific terms, the exit 

generated in Step 2 of E in Section 2.2.2 hinders I/O 

performance, which limits the performance of workloads 

running on the VMs. If the I/O performance of the VM 

itself is low, this limits the maximum achievable perfor-

mance even when using the mechanisms described in 

Sections 2.3.1 and 2.3.3 to streamline processing re-

lated to the network running on the VM. And this is 

a serious issue given that a lot of computational work 

currently runs on VMs within data centers.

■ Solution

To address this, we developed a mechanism dubbed 

Exit-Less, Isolated, and Shared Access (ELISA)*66*67, 

which allows the VM to access NICs shared between 

VMs without exiting the VM context. With our proposed 

method, the VMFUNC CPU instruction is used to create 

a new context within the VM in which only behavior 

permitted by the host can happen, and the NIC can only 

be accessed within this new context. This prevents VMs 

from performing malicious behavior through the NIC. 

Our method also implements methods for VMs to access 

devices in software, so it can provide greater behavioral 

flexibility than SR-IOV*60. We showed that implementing 

VM communication functions with our method can yield 

up to 163% performance gains compared with a mecha-

nism that is similar to HyperNF*59 in that it exits from the 

VM context with every VM I/O request.

2.5 Conclusion
I first took a brief look at the general behavior of system 

software communications functions, and then examined 

how past research in system software communications 

since the early 2010s has improved these functions, 

and then rounded out the discussion with a look at IIJ 

Research Laboratory’s recent work in this area.

Kenichi Yasukata

Researcher, Research Laboratory, IIJ
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