
Vol. 60
Internet
Infrastructure
Review

Dec.2023

Periodic Observation Report

Broadband Traffic Report
Traffic in a Stable Uptrend Post-COVID

Focused Research(1)

A Review of Research in System Software
Communications Since 2010

Focused Research(2)

Evolution of the IIJ Cloud
—Commemorating 30 Years

Internet Infrastructure Review
December 2023 Vol.60

© Internet Initiative Japan Inc.

Executive Summary .. 3

1.	Periodic Observation Report .. 4

1.1	 Overview .. 4

1.2	 About the Data .. 5

1.3	 Users’ Daily Usage .. 5

1.4	 Usage by Port .. 8

1.5	 Conclusion .. 9

2.	Focused Research .. 10

2.1	 Overview .. 10

2.2	 Main Communications-related Program Behaviors .. 10

2.2.1	 Communications-related Processing in General-purpose OSes .. 10

2.2.2	 VM Network I/Os .. 12

2.3	 Research Community Efforts .. 14

2.3.1	 Reducing System Call Costs .. 14

2.3.2	 More Efficient Packet Passing Between User Space and NICs .. 16

2.3.3	 Rethinking Network Stack Design .. 17

2.3.4	 Speeding up VM Communications .. 19

2.4	 Recent Work at IIJ Research Laboratory .. 21

2.4.1	 Integrating New OS Features and Existing Programs .. 21

2.4.2	 Speeding up VM I/O .. 22

2.5	 Conclusion .. 23

3.	Focused Research (2) .. 24

3.1	 Introduction .. 24

3.2	 1990s: Where it all Started .. 24

3.3	 2000s: Shedding the Dedicated-service-hosts Approach .. 25

3.4	 2010s – Present: Type-N, a Next-generation Service Platform .. 26

3.5	 2000s: Pioneering IaaS (Infrastructure as a Service) .. 28

3.6	 2010s: Cloud Computing Takes Off .. 30

3.7	 2020s – Present: Ongoing Evolution .. 35

3.8	 Conclusion .. 37

2

© Internet Initiative Japan Inc. 3

Vol. 60Dec.2023

Executive Summary

Junichi Shimagami

Mr. Shimagami is a Senior Executive Officer and the CTO of IIJ. His interest in the Internet led to him joining IIJ in
September 1996. After engaging in the design and construction of the A-Bone Asia region network spearheaded by IIJ,
as well as IIJ’s backbone network, he was put in charge of IIJ network services. Since 2015, he has been responsible
for network, cloud, and security technology across the board as CTO. In April 2017, he became chairman of the
Telecom Services Association of Japan’s MVNO Council, stepping down from that post in May 2023. In June 2021,
he also became a vice-chairman of the association.

This past July, Japan’s ruling party, the Liberal Democratic Party (LDP), announced that it would begin a full
review of the case for and against selling off shares in NTT held by the government. Japan’s NTT Act currently
requires that the government own at least a third of NTT shares, and the LDP is looking to make recommen-
dations on the future status of that Act and on the issue of enhancing the international competitiveness of Ja-
pan’s telecommunications industry overall as early as this fall.

Japan’s Ministry of Internal Affairs and Communications has also asked the Information and Communications
Council under its auspices to conduct a study into how telecommunications policy should be structured in re-
sponse to changes in the market environment, and to report its findings around next summer. The Council set
up a special committee on telecommunications policy in response, through which it has put out a broad call for
proposals and opinions regarding the vision Japan should pursue for its information and communications infra-
structure circa 2030 and the basic policy directions.

Telecommunications used to be a state-owned enterprise in Japan, run by NTT. The privatization of NTT and
resulting influx of competition came in 1985. Since then, the environment surrounding information and commu-
nications in Japan has seen dramatic change, including with respect to the way in which telecommunications
are used, the services and benefits provided, the position and importance of telecommunications in society, and
the players that populate the commercial landscape. The Internet has, without a doubt, been an influencing fac-
tor in all of this.

NTT naturally continues to be an important player in Japan’s information and communications infrastructure,
but beyond this, I also look forward to people engaging in high-level discussion and debate ahead about the na-
ture of information and communications not only in Japan but around the world.

The IIR introduces the wide range of technology that IIJ researches and develops, comprising periodic observa-
tion reports that provide an outline of various data IIJ obtains through the daily operation of services, as well as
focused research examining specific areas of technology.

The periodic observation report in Chapter 1 is our broadband traffic report for the year, providing our analysis
of IIJ’s fixed broadband and mobile traffic. Although we have observed no notable changes since the COVID-19
pandemic sparked significant traffic growth from 2020, the figures do clearly indicate that traffic volumes and
usage by port are steadily changing.

Chapter 2 presents a focused research report that dives into efforts to speed up communications processing
on systems software, titled “A Review of Research in Systems Software Communications Since 2010”. As the
processing power of hardware improves, the efficiency of systems software that controls that hardware, partic-
ularly the communications-related processing it performs, is becoming increasingly important. The report starts
with an overview of how systems software processes communications data, then surveys past research aimed
at making this more efficient, and closes out with a look at IIJ Research Laboratory’s own efforts in this area.

Our focused research report in Chapter 3 continues our series commemorating IIJ’s 30-year history. Previous
installments covered the IIJ backbone and DNS, and here we take a journey through the evolution of IIJ’s cloud
services. Since its founding, IIJ has been operating service hosts that provide a whole range of services to
accompany its Internet connectivity offerings. And even before terms like “the cloud” and “IaaS” entered the
common vernacular, IIJ had been providing computing and storage resources as services. The infrastructure
that encompasses the servers, storage systems, and networks used by these services has continued to evolve
with the times, and our report here goes over the changes that have occurred.

Through activities such as these, IIJ strives to improve and develop its services on a daily basis while maintain-
ing the stability of the Internet. We will continue to provide a variety of services and solutions that our custom-
ers can take full advantage of as infrastructure for their corporate activities.

Executive Summary

© Internet Initiative Japan Inc.

*1	 Kenjiro Cho. Broadband Traffic Report: Broadband Traffic Report: COVID’s 3rd Year Brings Lull in Traffic. Vol. 56. pp4-11. September 2022.

*2	 Kenjiro Cho. Broadband Traffic Report: Broadband Traffic Report: COVID-19’s Impact in its 2nd Year. Vol. 52. pp4-11. September 2021.

*3	 Kenjiro Cho. Broadband Traffic Report: The Impact of COVID-19. Vol. 48. pp4-9. September 2020.

*4	 Kenjiro Cho. Broadband Traffic Report: Moderate Growth in Traffic Volume Ongoing. Vol. 44. pp4-9. September 2019.

*5	 Kenjiro Cho. Broadband Traffic Report: Download Growth Slows for a Second Year Running. Vol. 40. pp4-9. September 2018.

1.	Periodic Observation Report

Broadband Traffic Report
Traffic in a Stable Uptrend Post-COVID

1.1	Overview
In this report, we analyze traffic over the broadband access

services operated by IIJ and present the results each

year*1*2*3*4*5. Here, we again report on changes in traffic

trends over the past year, based on daily user traffic and

usage by port. Traffic has continued to grow steadily since

the COVID-19 pandemic fell into the rearview mirror, and at

present we see no noticeable changes in that overall trend.

Figure 1 plots the overall average monthly traffic trends

for IIJ’s fixed broadband services and mobile services. IN/

OUT indicates the direction from the ISP perspective. IN

represents uploads from users, and OUT represents user

downloads. Because we cannot disclose specific traffic

numbers, we have normalized the data, setting the OUT

observations for January 2020, just before the pandemic,

for both services to 1.

Over the past year, broadband IN traffic increased 11% and

broadband OUT traffic increased 18%. The corresponding

year-earlier figures were 13% and 17%.

The broadband figures include IPv6 IPoE traffic. IPv6 traffic

on IIJ’s broadband services comprises both IPoE and PPPoE

traffic. As of June 2023, IPoE accounted for over 40% of

all traffic, at 42% of IN and 44% of OUT broadband traffic

overall, year-on-year increases of 3 percentage points each.

With PPPoE congestion having become quite noticeable

amid COVID-19, users are increasingly shifting to IPoE, and

use of IPoE thus continues to rise.

Mobile services traffic has been in an uptrend since 2021.

Over the past year, mobile IN traffic increased 27% and

mobile OUT traffic increased 31%.

We now look at broadband traffic by time of day on week-

days over the past year. Figure 2 plots hourly average

traffic volume for Monday–Friday for four one-week blocks

selected at intervals of roughly four months since May

2022. Weekday daytime traffic volumes have increased

during school holiday periods in recent years, so we selected

school weeks. Traffic volume here is the sum of PPPoE

and IPoE. The dotted lines in the lower part of the plot

Figure 1: Monthly Broadband and Mobile Traffic

 0

 0.25

 0.50

 0.75

 1.00

 1.25

 1.50

 1.75

2.00

2018 2019 2020 2021 2022 2023

IN（broadband）

OUT（broadband）

IN（PPPoE Only）

OUT（PPPoE Only）

IN（mobile）

OUT（mobile）

Tr
af

fic
 v

ol
um

e

Month/Year

4

Vol. 60Dec.2023

© Internet Initiative Japan Inc.

*6	 The PPPoE and IPoE usage figures of users who use both protocols are treated as coming from separate users.

1. Periodic Observation Report

Figure 2: Hourly Average Broadband Traffic on Weekdays in the Past Year

represent uploads for each week, but focusing again on

download volumes in this edition, we see that traffic volumes

were up across all times of the day. The size of the increase

during the middle of the day and during the nighttime peak

are around the same in absolute terms, so the proportional

increase is higher for daytime traffic.

1.2	About the Data
As with previous reports, for broadband traffic, our analysis

uses data sampled using Sampled NetFlow from the routers

that accommodate the fiber-optic and DSL broadband

customers of our personal and enterprise broadband access

services. For mobile traffic, we use access gateway billing

information to determine usage volumes for personal and

enterprise mobile services, and we use Sampled NetFlow

data from the routers used to accommodate these services

to determine the ports used.

Because traffic trends differ between weekdays and week-

ends, we analyze traffic in one-week chunks. In this report,

we look at data for the week of May 29 – June 4, 2023,

and compare those data with data for the week of May 30

– June 5, 2022, which we analyzed in the previous edition

of this report.

Results are aggregated by subscription for broadband traffic,

and by phone number for mobile traffic as some subscriptions

cover multiple phone numbers. The usage volume for each

broadband user was obtained by matching the IP addresses

assigned to users with the IP addresses observed. We

gathered statistical information by sampling packets using

NetFlow. The sampling rate was set to around 1/8,192, taking

into account router performance and load. We estimated

overall usage volumes by multiplying observed volumes by

the reciprocal of the sampling rate. Note that IPoE traffic

is not included in the analysis of traffic by port, as detailed

data is not available because we use Internet Multifeed

Co.’s transix service for IPoE.

1.3	Users’ Daily Usage
First, we examine daily usage volumes for broadband and

mobile users from several angles. Daily usage indicates the

average daily usage calculated from a week’s worth of data

for each user.

Since our 2019 report, we have used daily usage data

only on services provided to individuals. The distribution is

heavily distorted if we include enterprise services, where

usage patterns are highly varied. So to form a picture of

overall usage trends, we determined that using only the

personal user data would yield more generally applicable,

easily interpretable conclusions. Note that the analysis of

usage by port in the next section does include enterprise

data because of the difficulty of distinguishing between

individual and enterprise usage. Note also that we have

included IPoE user data in the broadband figures since

2021. In the previous edition of this report, we showed

PPPoE and IPoE separately, but starting with this edition,

we roll both sets of figures into a single broadband data

set*6.

May 29 – Jun 2, 2023
Jan 30 – Feb 3, 2023
Sep 26 – 30, 2022
May 30 – Jun 3, 20220

0:00 6:00 12:00 18:00

W
ee

kd
ay

 T
ra

ffi
c

5

© Internet Initiative Japan Inc.

distribution, indicating that download volume is more

than an order of magnitude larger than upload volume.

First, we look at the broadband distributions in Figure 3.

Comparing 2022 and 2023, both the IN and OUT distribu-

tions have moved just slightly to the right, indicating that

overall traffic has increased. The peaks of the mobile dis-

tributions in Figure 4 have also moved a little to the right

since last year, again indicating that overall traffic has in-

creased. Mobile usage volumes are significantly lower than

for broadband, and limits on mobile data usage mean that

heavy users, which fall on the right-hand side of the dis-

tribution, account for only a small proportion of the total.

There are also no extremely heavy users. The variability in

each user’s daily usage volume is higher for mobile than

for broadband owing to there being users who only use

mobile data when out of the home/office as well as limits

on mobile data.

Table 1 shows trends in the mean and median daily traffic

values for broadband users as well as the mode (the most

frequent value, which represents the peak of the distri-

bution). When the peak is slightly off the center of the

distribution, the distribution is adjusted to bring the mode

Figures 3 and 4 show the average daily usage distri-

butions (probability density functions) for broadband

and mobile users. Each compares data for 2022 and

2023 split into IN (upload) and OUT (download), with

user traffic volume plotted along the X-axis and user

frequency along the Y-axis. The X-axis shows volumes

between 10KB (104) and 100GB (1011) using a logarithmic

scale. Most users fall within the 100GB (1011) range,

with a few exceptions.

The IN and OUT traffic distributions in the figures are

close to a log-normal distribution, which looks like a

normal distribution on a semi-log plot. A linear plot would

show a long-tailed distribution, with the peak close to

the left and a slow gradual decrease toward the right.

The OUT distribution is further to the right than the IN

Figure 4: Daily Mobile User Traffic Volume Distribution
Comparison of 2022 and 2023

Figure 3: Daily Broadband User Traffic Volume Distribution
Comparison of 2022 and 2023

0

0.2

0.4

0.8

0.6

1

10
(10KB)

4 10
(100KB)

5 10
(1MB)

6 10
(10MB)

7 10
(100MB)

8 10
(1GB)

9 10
(10GB)

10 10
(100GB)

11

2022(IN)

2023(IN)
2022(OUT)

2023(OUT)

Users' Daily Traffic Volume (Bytes)

P
ro

ba
bi

lit
y

D
en

si
ty

0
10

(10KB)

4 10
(100KB)

5 10
(1MB)

6 10
(10MB)

7 10
(100MB)

8 10
(1GB)

9 10
(10GB)

10 10
(100GB)

11

0.2

0.4

0.8

0.6

1

2022(IN)

2023(IN)
2022(OUT)

2023(OUT)

Users' Daily Traffic Volume (Bytes)

P
ro

ba
bi

lit
y

D
en

si
ty

Table 1: Trends in Mean and Mode of
Broadband Users’ Daily Traffic Volume

2015

2016

2007

2008

2009

2010

2011

2012

2013

2014

2017

2018

2019

2020

2021

351

361

436

490

561

442

398

320

348

364

391

428

479

609

714

45

63

5

6

6

7

9

16

28

13

79

79

89

158

200

32

48

5

6

6

7

9

13

21

11

63

66

75

122

143

1399

1808

718

807

973

878

931

928

1124

945

2285

2664

2986

3810

4432

708

1000

56

79

100

126

200

355

501

251

1259

1585

1995

3162

3981

443

726

59

75

91

111

144

208

311

900

1083

1187

1638

2004

2022 727 178142 4610 39812010

2023 804 224166 5456 50122369

176

Year Mean Median MedianMode Mean Mode

 IN(MB/day) OUT(MB/day)

6

Vol. 60Dec.2023

1. Periodic Observation Report

© Internet Initiative Japan Inc.

toward the center. Comparing 2022 and 2023, the IN

mode rose from 178MB to 224MB and the OUT mode rose

from 3,981MB to 5,012MB, translating into growth factors

of 1.26 for IN and 1.26 for OUT. Meanwhile, because the

means are influenced by heavy users (on the right-hand

side of the distribution), they are significantly higher than

the corresponding modes, with the IN mean at 804MB

and the OUT mean at 5,456MB in 2023. The 2022 means

were 727MB and 4,610MB, respectively. As mentioned,

up to 2020 the data covered only PPPoE users, and since

2021 the data have covered both PPPoE and IPoE users.

Table 2 shows the mobile traffic metrics. In 2023, the IN

mode was 11MB and the OUT mode was 100MB, while the

means were IN 14MB and OUT 129MB. The 2022 modes

were IN 10MB and OUT 89MB, and the means were IN

13MB and OUT 114MB.

Figures 5 and 6 plot per-user IN/OUT usage volumes for

random samples of 5,000 users. The X-axis shows OUT

(download volume) and the Y-axis shows IN (upload vol-

ume), with both using a logarithmic scale. Users with

identical IN/OUT values fall on the diagonal.

The cluster spread out below and parallel to the diagonal in

each of these plots represents typical users with download

volumes an order of magnitude higher than upload vol-

umes. Variability between users in terms of usage levels

and IN/OUT ratios is wide, indicating that there is a diverse

range of usage styles. For mobile traffic, the pattern of

OUT being an order of magnitude larger also applies, but

usage volumes are much lower than for broadband. For

both broadband and mobile, there is almost no difference

between these plots and those for 2022.

Traffic is heavily skewed across users, such that a small

proportion of users accounts for the majority of overall

traffic volume. For example, the top 10% of broadband

users account for 49% of total OUT and 76% of total IN

traffic, while the top 1% of users account for 16% of OUT

and 49% of IN traffic. On mobile, the top 10% of users

account for 49% of total OUT and 47% of total IN traffic,

while the top 1% of users account for 15% of OUT and

15% of IN traffic.

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

10
(10KB)

4 10
(100KB)

5 10
(1MB)

6 10
(10MB)

7 10
(100MB)

8 10
(1GB)

9 10
(10GB)

10 10
(100GB)

11

Total(2023)

User’ s Daily Download Volume (Bytes)

U
se

r’
s

D
ai

ly
 U

pl
oa

d
V

ol
um

e
(B

yt
es

)

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

10
(10KB)

4 10
(100KB)

5 10
(1MB)

6 10
(10MB)

7 10
(100MB)

8 10
(1GB)

9 10
(10GB)

10 10
(100GB)

11

Mobile(2023)

User’ s Daily Download Volume (Bytes)

U
se

r’
s

D
ai

ly
 U

pl
oa

d
V

ol
um

e
(B

yt
es

)

Figure 5: IN/OUT Usage for Each Broadband User Figure 6: IN/OUT Usage for Each Mobile User

2022 10.06.0 113.7 89.149.212.8

2015 3.2 49.2 44.723.5

2016

4.5

2017 4.9 79.9 79.441.27.9

7.14.1 66.5 63.132.7

2018 8.95.4 83.8 79.444.3

2019 8.95.9 84.9 79.446.4

2020 7.14.5 79.4 63.135.1

2021

2023

6.2

7.6

9.3

10.5

11.2

10.4

9.9 7.94.7 85.9 70.837.9

14.1 11.26.8 129.2 100.056.0

Year Mean Mode Mean MedianMedian Mode

IN(MB/day) OUT(MB/day)

Table 2: Trends in Mean and Mode of
Mobile Users’ Daily Traffic Volume

7

© Internet Initiative Japan Inc.

1.4	Usage by Port
Next, we look at a breakdown of traffic and examine

usage levels by port. Recently, it has become difficult

to identify applications by port number. Many P2P

applications use dynamic ports on both ends, and a

large number of client/server applications use HTTP

ports like port 80 to avoid firewalls. Hence, generally

speaking, when both parties are using a dynamic port

numbered 1024 or higher, the traffic is likely to be from

a P2P application, and when one of the parties is using

a well-known port lower than 1024, the traffic is likely

to be from a client/server application. In light of this, we

take the lower of the source and destination port numbers

when breaking down TCP and UDP usage volumes by port.

Table 3 shows the percentage breakdown of broadband

users’ usage by port over the past five years. In 2023,

71% of all traffic was over TCP connections, down

1 point from 2022. The proportion of traffic over port

443 (HTTPS) was 57%, a 1-point increase from last

year. The proportion of traffic over port 80 (HTTP) fell

from 9% to 7%. The figure for UDP port 443, which is

used by the QUIC protocol, was up 2 points to 18%.

TCP dynamic port traffic fell ever so slightly to below 6%.

Individual dynamic port numbers account for only a tiny

portion, with the most commonly used port 31000 only

making up 1.1%.

Table 4 shows the percentage breakdown by port for

mobile users. The figures are close to those for broadband

on the whole. This is possibly because apps similar to

those for PC platforms are now also used on smart-

phones, and because the proportion of broadband

usage on smartphones is rising.

The broadband port data only include PPPoE, not IPoE,

and so do not necessarily reflect the trend in fixed

broadband overall. Comparing IPv4 and IPv6 on mobile,

port 443 accounts for a higher proportion of both TCP and

UDP usage on IPv6, and there is probably a similar trend

in the case of IPoE.

protocol　port

year

TCP

　(< 1024)

　443(https)

　80(http)

　183

　993(imaps)

　(>= 1024)

　22(ssh)

　31000

　8080

　1935(rtmp)

UDP

　443(https)

　8801

ESP

　4500(nat-t)

IP-ENCAP

GRE

ICMP

2019

(%)

81.2

51.9

73.3

20.4

0.0

0.3

0.2

7.9

0.2

0.5

0.3

14.1

7.8

4.4

0.1

0.2

0.0

0.0

0.3

2020

(%)

77.2

52.4

70.5

17.2

0.0

0.2

0.2

6.7

0.4

0.4

0.4

19.4

10.5

3.2

0.1

0.1

0.0

1.1

0.6

2021

(%)

71.9

53.5

65.8

11.6

0.1

0.1

0.2

6.1

0.6

0.4

0.2

24.5

15.9

3.3

0.2

0.1

0.0

0.9

0.8

2022

(%)

71.6

55.7

65.4

8.9

0.2

0.1

0.1

6.2

0.9

0.3

0.2

24.3

16.3

0.6
3.8

0.2

0.1

0.0

0.8

2023

(%)

70.5

56.9

64.8

7.2

0.2

0.1

0.1

5.7

1.1

0.4

0.2

25.4

18.2

0.4
3.8

0.1

0.1

0.0

1.0

Table 3: Broadband Users’ Usage by Port

protocol　port

year

TCP

　443(https)

　80(http)

ESP
GRE

ICMP

　993(imaps)

　1935(rtmp)

UDP
　443(https)

　4500(nat-t)

　8801

　51820

　53(dns)

2019

(%)

76.9

55.6

10.3

5.8
0.0

0.0

0.3

0.1

17.3
8.3

3.0

0.0

0.0

0.1

2020

(%)

75.5

50.7

7.4

6.4
0.1

0.0

0.2

0.1

18.0
9.3

1.8

1.4

0.0

0.1

2021

(%)

70.3

44.4

5.0

5.8
0.1

0.0

0.2

0.1

23.8
16.3

3.7

0.7

0.0

0.2

2022

(%)

71.6

42.3

4.1

3.9
0.0

0.0

0.1

0.1

24.4
17.9

0.3

0.1

0.2

2.7

2023

(%)

71.0

42.1

3.5

2.4
0.0

0.1

0.1

0.2

26.5
20.9

0.2

0.2

0.2

2.5

Table 4: Mobile Users’ Usage by Port

8

Vol. 60Dec.2023

1. Periodic Observation Report

© Internet Initiative Japan Inc.

Figure 7 compares overall broadband traffic for key port

categories across the course of the week from which

observations were drawn in 2022 and 2023. We break

the data into four port buckets: TCP ports 80 and 443,

dynamic TCP ports (1024 and up), and UDP port 443. The

data are normalized so that peak overall traffic volume on

the plot is 1. The overall peak is around 19:00–23:00.

When compared, there are no major changes between

2022 and 2023, but traffic on UDP port 443 is up a little,

and as previously mentioned in relation to Figure 2, the

proportion of traffic accounted for by daytime hours has

also increased a bit.

Figure 8 shows the trend for TCP ports 80 and 443 and

UDP port 443, which account for the bulk of mobile

traffic. As was the case with broadband, mobile traffic

on UDP port 443 was up slightly compared with 2022.

The lunchtime peak is a little lower compared with 2022

and, accordingly, more spread out. Comparing the plots

with those for broadband, usage times evidently differ,

with mobile having three separate traffic peaks on week-

days: morning commute, lunch break, and evening.

1.5	Conclusion
With the COVID-19 pandemic behind us, we have finally

returned to normal everyday life, and yet the Internet has

come to permeate our daily affairs and is now a crucial part of

our everyday infrastructure. Video conferencing and remote

work are here to stay, and even our children now routinely

stream video in the home. And with Japan’s performances

in the 2022 FIFA World Cup and the March 2023 World

Baseball Classic attracting eyeballs, online broadcasting has

also broadened the sports viewership base. The proportion

of social media accounted for by video content has also

increased markedly relative to a few years ago. Meanwhile,

although per-user traffic volume on both broadband and

mobile jumped in 2020, the first year of the pandemic, it has

since eased to relatively stable growth levels. Overall traffic

volume also remains in a solid uptrend. Contributing factors

here may include the decline in work-from-home rates since

2021 resulting in people spending less time online, a lack

of any truly notable new services or use cases, and milder

growth in traffic volumes than growth in video content

volumes would otherwise suggest owing to technological

advancements such as more efficient video compression.

Figure 7: Broadband Users’ Port Usage Over a Week
2022 (top) and 2023 (bottom)

Figure 8: Mobile Users’ Port Usage Over a Week
2022 (top) and 2023 (bottom)

Kenjiro Cho

Research Director, Research Laboratory, IIJ

9

© Internet Initiative Japan Inc.

A Review of Research in System Software
Communications Since 2010

Figure 1: Structure of Communications Software in a General-purpose OS

2.1	Overview
Network interface cards (NICs) supporting speeds above

10 Gbps became commonplace in the early 2010s and are

now widely used in data-center and other applications.

With the performance of NICs rising, the efficiency of

the system software that controls this hardware, partic-

ularly its data communications, has become increasingly

important, and the research community has pursued

many avenues to improve this performance.

In Section 2.2, I start by looking at the behavior of system

software when processing communications. Section

2.3 then summarizes past research aimed at speeding

this up. With that background in place, Section 2.4 then

looks at IIJ Research Laboratory’s efforts in this area in

recent years.

I hasten to add, however, that the efforts described in

Section 2.4 are still in the research stages and not yet part

of IIJ’s service infrastructure.

2.2	Main Communications-related Program 	
	 Behaviors
In Section 2.2.1, I start by walking through communications

processing in general-purpose OSes, and then in Section

2.2.2 I discuss communications on virtual machines

(VMs) commonly used in data centers.

2.2.1	 Communications-related Processing in General-	

	 purpose OSes

Let’s look at communications processing in a general-pur-

pose OS environment, with reference to Figure 1.

■ Basic system structure

The three main components are (from top to bottom in

Figure 1):

(1)	Application running in user space

(2)	The kernel, which implements the network stack

and device drivers

(3)	A NIC, which sends and receives packets.

2.	Focused Research (1)

so
ck

et

qu
eu

e
N

IC

qu
eu

e

Wire

application

us
er

-s
pa

ce
ke

rn
el

B

network stack

device driver
A C

10

Vol. 60Dec.2023

2. Focused Research (1)

© Internet Initiative Japan Inc.

Figure 2: Processing of Incoming Packets on a General-purpose OS
—Part and Step Indicated at Right

Figure 3: Processing of Outgoing Packets on a General-purpose OS—
Part and Step Indicated at Right

■ Typical loop

Programs, called servers, that respond to client requests

typically run the following loop: (A) process incoming

packets in kernel space, (B) perform application-specific

processing in user space, and (C) process outgoing packets

in kernel space.

Packet receipt and transmission processing is summarized

in Figures 2 and 3 by execution context.

■ A: Incoming packet processing in kernel space

□ STEP 1: Hardware (NIC) notifies software

When a NIC receives a new packet, it issues a hardware

interrupt to the CPU to notify the software. This interrupts

the program that was running on the CPU and switches

to the hardware interrupt handler set up by the kernel

in advance. Hardware interrupt handlers are implementa-

tion-dependent, but it’s fairly common for them to start a

kernel thread to process incoming packets.

□ STEP 2: Process incoming packets

The kernel thread started to process the incoming packets

in Step 1 reads the incoming packet headers and processes

the packets accordingly. For example, if a TCP packet is

received, it checks the TCP ACK number for the corre-

sponding connection, and adds the packet to the queue of

the socket associated with that connection.

□ STEP 3: Notify user-space process

In Step 2, when data or a new connection is added to a

socket queue, if the user-space process/thread associated

with that socket is waiting (blocking state) for new input

per the select, poll, epoll_wait, or read family of system

calls (e.g., read or recvmsg), then the process/thread

started (unblocked).

■ B: Program processing in user space

□ STEP 1: Awaiting and detecting input events

Many server programs that run in user space stop

execution (remain in a blocking state) when using select,

poll, epoll_wait, or read system calls to wait for new input

to sockets (file descriptors) they are listening on. If input

is received on a socket, this standby (blocking) state is

released in Step 3 of A above (incoming packet processing

in kernel space). Also, when a system call like select,

poll, or epoll_wait unblock execution and return a value,

the kernel passes on information about which socket (file

descriptor) the input event occurred on.

□ STEP 2: Data passed from kernel to user space

The user-space program issues a read system call to

the socket (file descriptor) on which the input event in

Step 1 was detected, and then copies the data added

to the socket queue in Step 2 of A above (incoming

packet processing in kernel space) from the kernel to

user space.

NIC

interrupt handler (kernel)

kernel thread

kick the kernel thread

trigger a hardware interrupt

packet processing (e.g., TCP/IP)

push data to a socket queue

user-space program

kick the user-space program

invoke a read system call
to pull data from the socket queue

A: STEP 1

A: STEP 2

A: STEP 3

B: STEP 1detect an event at a socket

B: STEP 2

interrupt

scheduling

scheduling

NIC

kernel

transmit packets from the NIC

user-space program

C: STEP 3

C: STEP 1

C: STEP 2

invoke a write system call B: STEP 4

packet processing (e.g., TCP/IP)

pass data to subsequent subsystems

request packet TX to the NIC

push data to the socket queue

1111

© Internet Initiative Japan Inc.

*1	 In some cases, a write system call for a TCP socket (file descriptor) may not immediately result in the data specified by the user-space program being transmitted

by the NIC. Possible reasons for this include the TCP implementation’s congestion control, Nagle’s algorithm waiting for the outgoing buffer to reach a certain size

as a means of improving performance, and the delay of data transmissions by subsystems such as qdisc, which handles NIC bandwidth control.

□ STEP 3: Application-specific processing

The program performs its application-specific processing

on the data received in Step 2. For example, a web server

would parse the received data, determine the content of

the request, and then generate response data.

□ STEP 4: Tell the kernel to send the data

The program issues a write system call (e.g., write or

sendmsg) to the socket (file descriptor) that tells the kernel

to send the data generated in Step 3.

■ C: Outgoing packet processing in kernel space

□ STEP 1: Data passed from user space to kernel

The write system call issued in Step 4 of B switches pro-

cessing to kernel space. The kernel then copies the data

generated by the user-space program into kernel space

and adds it to the send queue associated with the socket

specified by the user-space program.

□ STEP 2: Header processing based on protocol

In the same kernel context as in Step 1, packet headers

are added to the data to be transmitted if necessary. Once

the packet is ready and the kernel subsystem determines

it is okay to transfer the data, it is passed on to the next

subsystem*1.

□ STEP 3: Data transmitted from the NIC

The data (with header added) is ultimately passed to the

NIC device driver, and the device driver tells the NIC to

send the data.

2.2.2	 VM Network I/Os

Now let’s look at how communications processing works

in a VM environment, with reference to Figure 4.

■ Basic systm structure

The four components are (from top to bottom in Figure 4):

(1)	Virtual machine (VM)

(2)	Virtual NICs assigned to the VM

(3)	A host kernel that implements a virtual I/O backend,

tap devices, virtual switches, and device drivers

(4)	A physical NIC.

VM communication functions can be implemented in a

number of ways, but here I consider a format similar to

Linux vhost-net, in which threads inside the host kernel

function as the virtual I/O backend.

Figure 4: Virtual Machine Communications Mechanism

ta
p

de
vi

ce

qu
eu

e

ph
ys

ic
al

N

IC

qu
eu

e

Wire

ho
st

 k
er

ne
l

device driver

virtual I/O backend

vi
rtu

al

N
IC

qu

eu
e

V
M vNIC device driver

virtual I/O backend

vNIC device driver

virtual switch

D E D

D

E

E

12

Vol. 60Dec.2023

2. Focused Research (1)

© Internet Initiative Japan Inc.

*2	 When a general-purpose OS is running on a VM, the behavior of communication programs within the VM is basically the same as described in Section 2.2.1.

■ Typical loop

On VMs, programs that respond to requests, as discussed

above, typically run the following loop: (D) process incom-

ing packets for the VM in the host kernel, Parts (A)–(C) as

described above for general-purpose OSes*2, (E) process

the VM’s outgoing packets in the host kernel.

Packet receipt and transmission processing is summarized

in Figures 5 and 6 by execution context.

■ D: Processing incoming packets for the VM

□ STEP 1: Notification from hardware (physical NIC)

The initial processing performed when a packet arrives at

the physical NIC is the same as in Step 1 of A above. A

hardware interrupt handler is started in the host kernel, and

a kernel thread is started to process incoming packets.

□ STEP 2: Incoming packets passed to virtual switch

As in Step 2 of A above, the kernel thread started in Step

1 processes the received packet, but the processing per-

formed is different from in A above. First, the received

packet is passed to the virtual switch. The virtual switch

reads the Ethernet header of the received packet, finds

the appropriate destination interface for the packet, and

adds the packet to that interface’s receive queue. Here,

if the destination interface is a tap device, it starts the

backend kernel thread that is responsible for virtual I/O

and associated with that tap device.

□ STEP 3: Pass received data to virtual NIC

The virtual I/O backend kernel thread started in Step

2 pulls data from a tap device and pushes it to the

virtual NIC’s receive queue. It then sends an interrupt

to the VM to notify it that packets were received on

the virtual NIC.

□ STEP 4: Process incoming packets within the VM

The VM receives the interrupt sent by the host in Step

3, and processing switches to the interrupt handler set

up by the kernel within the VM. From this point on,

processing within the VM follows the process starting

from Step 1 of A above.

Figure 5: Processing of Incoming Packets on a Virtual Machine
—Part and Step Indicated at Right

Figure 6: Processing of Outgoing Packets on a Virtual Machine
—Part and Step Indicated at Right

NIC

interrupt handler (host kernel)

kernel thread

kick the kernel thread

trigger a hardware interrupt

pass packets to a virtual switch

packets are pushed to a tap device

kernel thread (virtual I/O backend)

kick a kernel thread for virtual I/O

pass packets to a virtual NIC

D: STEP 1
(A: STEP 1)

D: STEP 2

pull packets from a tap device
D: STEP 3

interrupt to host

scheduling in host

scheduling in host
send an emulated interrupt to a VM

interrupt handler (VM kernel)
kick the (VM) kernel thread

scheduling in host
D: STEP 4

kernel thread (VM kernel)

scheduling in VM
A: STEP 2, 3, ...

NIC

kernel (host)

transmit packets from the NIC

virtual NIC device driver (VM kernel)

E: STEP 3

E: STEP 2

send a TX request to the host

E: STEP 1

kick the kernel thread for virtual I/O

kernel thread (virtual I/O backend)
pull packets from the virtual NIC

scheduling in host

push packets to a tap device

request packet TX to the NIC

packets are passed to a virtual switch

1313

© Internet Initiative Japan Inc.

*3	 Livio Soares and Michael Stumm. 2010. FlexSC: Flexible System Call Scheduling with Exception-Less System Calls. In 9th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 10). (https://www.usenix.org/conference/osdi10/flexsc-flexible-system-call-scheduling-exception-less-system-calls).

*4	 The idea of reducing context switching by issuing multiple requests in batches had been explored before the advent of FlexFC via a technique called multi-calling

in compilers*5 and hypervisors*6.

*5	 Mohan Rajagopalan, Saumya K. Debray, Matti A. Hiltunen, and Richard D. Schlichting. 2003. Cassyopia: Compiler Assisted System Optimization. In Proceedings

of the 9th Conference on Hot Topics in Operating Systems - Volume 9 (HotOS ’03), 18. (https://www.usenix.org/conference/hotos-ix/cassyopia-compiler-assist-

ed-system-optimization).

*6	 Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. 2003. Xen and the Art of Virtual-

ization. In Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles (SOSP ’03), 164–177. (https://doi.org/10.1145/945445.945462).

program described in Part B above runs its loop. The point

to note here is that the system calls involve switching the

user and kernel contexts and are thus CPU-intensive. In

specific terms, the workloads discussed in Part B involve

frequent system call invocations: select, poll, and epoll _

wait in Step 1, read system calls in Step 2, and write

system calls in Step 4. The issue is that this increases

the amount of time spent on context switching as a

proportion of the overall program execution time.

■ Issuing multiple system calls at once

In 2010, researchers presented a system called FlexSC*3

designed to allow multiple processing requests to be

sent to the kernel at once (batching). To achieve this,

the system creates a set of memory pages that is shared

among user and kernel space. To execute a system call,

user-space threads write the system call and its argu-

ments to the shared memory area, and a kernel thread

asynchronously executes these calls and returns the

results. This mechanism eliminates the need for context

switching on a call-by-call basis. Implementation methods

differ in their details, but this approach*4 came to be

widely adopted in efforts to optimize network stack

implementations, as described in Section 2.3.3.

■ E: Process the VM’s outgoing packets

□ STEP 1: VM sends a transmission request

At this point, the VM has executed Step 3 of C above and

added the outgoing data to the virtual NIC’s send queue

via the virtual NIC device driver. Now when the virtual

NIC is asked to send packets, execution context switches

from the VM to the host kernel, and the kernel thread for

virtual I/O is started.

□ STEP 2: Data passed from virtual NIC to tap device

The kernel thread for virtual I/O started in Step 1 above

pulls data from the virtual NIC’s send queue and pushes

it to a tap device.

□ STEP 3: Transfer data from tap device to virtual switch

After Step 2, packets are passed through the tap device

to the virtual switch and transmitted from the interface

corresponding to the packet’s destination.

2.3	Research Community Efforts
Here, I go over efforts by the research community to speed

up the workloads discussed in the previous sections.

2.3.1	 Reducing System Call Costs

The faster a NIC’s I/O operations, the more frequently

(to the extent allowed by CPU resources) the user-space

14

Vol. 60Dec.2023

2. Focused Research (1)

© Internet Initiative Japan Inc.

*7	 Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott, Balraj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon Crowcroft. 2013.

Unikernels: Library Operating Systems for the Cloud. In Proceedings of the Eighteenth International Conference on Architectural Support for Programming Languag-

es and Operating Systems (ASPLOS ’13), 461–472. (https://doi.org/10.1145/2451116.2451167).

*8	 Avi Kivity, Dor Laor, Glauber Costa, Pekka Enberg, Nadav Har’El, Don Marti, and Vlad Zolotarov. 2014. OSv - Optimizing the Operating System for Virtual Machines.

In 2014 USENIX Annual Technical Conference (USENIX ATC 14), 61–72. (https://www.usenix.org/conference/atc14/technical-sessions/presentation/kivity).

*9	 Alfred Bratterud, Alf-Andre Walla, Hårek Haugerud, Paal E. Engelstad, and Kyrre Begnum. 2015. IncludeOS: A Minimal, Resource Efficient Unikernel for Cloud

Services. In 2015 IEEE 7th International Conference on Cloud Computing Technology and Science (CloudCom), 250– 257. (https://doi.org/10.1109/Cloud-

Com.2015.89).

*10	 Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuenzer, Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. 2017. My Vm Is

Lighter (and Safer) Than Your Container. In Proceedings of the 26th Symposium on Operating Systems Principles (SOSP ’17), 218–233. (https://doi.

org/10.1145/3132747.3132763).

*11	 Pierre Olivier, Daniel Chiba, Stefan Lankes, Changwoo Min, and Binoy Ravindran. 2019. A Binary-Compatible Unikernel. In Proceedings of the 15th ACM SIGPLAN/

SIGOPS International Conference on Virtual Execution Environments (VEE 2019), 59–73. (https://doi.org/10.1145/3313808.3313817).

*12	 Hsuan-Chi Kuo, Dan Williams, Ricardo Koller, and Sibin Mohan. 2020. A Linux in Unikernel Clothing. In Proceedings of the Fifteenth European Conference on Com-

puter Systems (EuroSys ’ 20). (https://doi.org/10.1145/3342195.3387526).

*13	 Simon Kuenzer, Vlad-Andrei Bădoiu, Hugo Lefeuvre, Sharan Santhanam, Alexander Jung, Gaulthier Gain, Cyril Soldani, Costin Lupu, Ştefan Teodorescu, Costi Rădu-

canu, Cristian Banu, Laurent Mathy, Răzvan Deaconescu, Costin Raiciu, and Felipe Huici. 2021. Unikraft: Fast, Specialized Unikernels the Easy Way. In Proceedings

of the Sixteenth European Conference on Computer Systems (EuroSys ’21), 376–394. (https://doi.org/10.1145/3447786.3456248).

*14	 Ali Raza, Thomas Unger, Matthew Boyd, Eric B Munson, Parul Sohal, Ulrich Drepper, Richard Jones, Daniel Bristot De Oliveira, Larry Woodman, Renato Mancuso,

Jonathan Appavoo, and Orran Krieger. 2023. Unikernel Linux (UKL). In Proceedings of the Eighteenth European Conference on Computer Systems (EuroSys ’23),

590–605. (https://doi.org/10.1145/3552326.3587458).

*15	 Ruslan Nikolaev and Godmar Back. 2013. VirtuOS: An Operating System with Kernel Virtualization. In Proceedings of the Twenty-Fourth ACM Symposium on

Operating Systems Principles (SOSP ’13), 116–132. (https://doi.org/10.1145/2517349.2522719).

*16	 Chia-Che Tsai, Kumar Saurabh Arora, Nehal Bandi, Bhushan Jain, William Jannen, Jitin John, Harry A. Kalodner, Vrushali Kulkarni, Daniela Oliveira, and Donald E.

Porter. 2014. Cooperation and Security Isolation of Library OSes for Multi-Process Applications. In Proceedings of the Ninth European Conference on Computer

Systems (EuroSys ’14). (https://doi.org/10.1145/2592798.2592812).

*17	 Dan Schatzberg, James Cadden, Han Dong, Orran Krieger, and Jonathan Appavoo. 2016. EbbRT: A Framework for Building PerApplication Library Operating

Systems. In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), 671– 688. (https://www.usenix.org/conference/osdi16/tech-

nical-sessions/presentation/schatzberg).

*18	 Yiming Zhang, Jon Crowcroft, Dongsheng Li, Chengfen Zhang, Huiba Li, Yaozheng Wang, Kai Yu, Yongqiang Xiong, and Guihai Chen. 2018. KylinX: A Dynamic

Library Operating System for Simplified and Efficient Cloud Virtualization. In 2018 USENIX Annual Technical Conference (USENIX ATC 18), 173–186. (https://

www.usenix.org/conference/atc18/presentation/zhang-yiming).

*19	 Irene Zhang, Amanda Raybuck, Pratyush Patel, Kirk Olynyk, Jacob Nelson, Omar S. Navarro Leija, Ashlie Martinez, Jing Liu, Anna Kornfeld Simpson, Sujay Jayakar,

Pedro Henrique Penna, Max Demoulin, Piali Choudhury, and Anirudh Badam. 2021. The Demikernel Datapath OS Architecture for Microsecond-Scale Datacenter

Systems. In Proceedings of the ACM Sigops 28th Symposium on Operating Systems Principles (SOSP ’21), 195–211. (https://doi.org/10.1145/3477132.3483569).

■ Eliminating the boundary between apps and the kernel

Another approach is to run applications and the OS kernel

in the same address space, thus eliminating the boundary

between applications and the kernel. This makes it possi-

ble for application programs to use features implemented

by the kernel via ordinary function calls rather than sys-

tem calls. This can be done via unikernels*7, which runs all

programs—including applications and the kernel—in the

same address space, and library OSes, which implement

kernel functions as libraries that can run in user space. In

addition to improved performance due to reduced system

call context switching costs, unikernels and library OSes

also offer other notable advantages such as shorter

startup times for high-demand OS functions in data-cen-

ter environments, reduced memory usage, and improved

security. This approach has yielded much research and

a range of implementations, including unikernel systems

like OSv*8, IncludeOS*9, LightVM*10, HermiTux*11, Lupin

Linux*12, Unikraft*13, and Unikernel Linux*14, as well as

library OSes like VirtuOS*15, Graphene*16, EbbRT*17,

KylinX*18, and Demikernel*19.

1515

© Internet Initiative Japan Inc.

*20	 Intel. 2010. Data Plane Development Kit. (https://www.dpdk.org/).

*21	 Luigi Rizzo. 2012. Netmap: A Novel Framework for Fast Packet I/O. In 2012 USENIX Annual Technical Conference (USENIX ATC 12), 101–112. (https://www.

usenix.org/conference/atc12/technical-sessions/presentation/rizzo).

*22	 When a newly received packet is detected, the data will already be in the packet buffer pasted into the user space, so there is no need to perform the processing

described in Step 2 of B.

□ STEP 2: Application-specific processing

As in Step 3 of Part B, the program performs applica-

tion-specific processing based on the data received.

□ STEP 3: Transmit data from the NIC

If the application-specific processing requires data to

be transmitted, the program first populates the outgo-

ing packet buffer that was pasted into user space with

the data it wants to send, and then uses the interface

provided by the packet I/O framework to ask the NIC to

transmit the packets.

□ Caveat

The overall program behavior described above replaces

all of the processing done in Parts A, B, and C in the

previous sections and greatly simplifies things by making

it possible to pass data between the user-space program

and the NIC extremely quickly. But it must be noted that

because this does not include protocol-related processing

as described in Step 2 of A and Step 2 of C, it is not

possible to run a web server that delivers data via TCP

connections with this setup as is.

□ Available cost reductions

The details depend on the packet I/O framework imple-

mentation, but with DPDK*20, for example, not only is

there no intervening protocol-related processing (as

discussed in the caveat above), other costs that can be

reduced relative to the general-purpose OS environment

discussed in Section 2.2.1 include the kernel thread

2.3.2	 More Efficient Packet Passing Between User Space 	

	 and NICs

With 10Gbps NICs now widespread, it has become difficult

to achieve wire-rate performance, particularly with

small packet sizes, with configurations like that illus-

trated in Figure 1.

■ Program behavior

To address this issue, in the early 2010s research-

ers presented packet I/O frameworks like Data Plane

Development Kit (DPDK)*20 and netmap*21 to enable the

efficient transfer of data between user space and NICs.

Packet I/O frameworks have two basic functions:

(1)	Paste the NIC’s packet buffer directly into the

user-space program.

(2)	Provide a lightweight interface to allow the user-space

program to

	 a) detect new packets received by the NIC, and

	 b) request the NIC to transmit packets.

■ Program behavior

When a user-space program uses these basic packet I/O

framework functions to perform processing in the manner

described in Part B above (receiving data and then gener-

ating and sending a response), the behavior is as follows.

□ STEP 1: Detect received packets

The program uses the interface provided by the packet I/O

framework to detect new packets received by the NIC*22.

16

Vol. 60Dec.2023

2. Focused Research (1)

© Internet Initiative Japan Inc.

*23	 NFV makes it possible to implement network functions in software on commodity hardware, whereas previously you needed to purchase expensive custom hard-

ware appliances for each network function. NFV allows a single computer to be used in multiple applications, and It is considered easier to add/change functions

with NFV than with custom hardware. The availability of high-speed NICs at low prices, in particular, has likely been a tailwind for the uptake of NFV.

*24	 Tom Barbette, Cyril Soldani, and Laurent Mathy. 2015. Fast Userspace Packet Processing. In 2015 ACM/IEEE Symposium on Architectures for Networking and

Communications Systems (ANCS), 5–16. (https://doi.org/10.1109/ANCS.2015.7110116).

*25	 Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang, Aurojit Panda, Sylvia Ratnasamy, Luigi Rizzo, and Scott Shenker. 2015. E2: A Framework for NFV Applica-

tions. In Proceedings of the 25th Symposium on Operating Systems Principles (SOSP ’15), 121–136. (https://doi.org/10.1145/2815400.2815423).

*26	 Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia Ratnasamy, and Scott Shenker. 2016. NetBricks: Taking the V Out of NFV. In 12th USENIX Symposium

on Operating Systems Design and Implementation (OSDI 16), 203–216. (https://www.usenix.org/conference/osdi16/technical-sessions/presentation/panda).

*27	 Georgios P. Katsikas, Tom Barbette, Dejan Kostić, Rebecca Steinert, and Gerald Q. Maguire Jr. 2018. Metron: NFV Service Chains at the True Speed of the Under-

lying Hardware. In 15th USENIX Symposium on Networked Systems Design and Implementation (NSDI 18), 171–186. (https://www.usenix.org/conference/nsdi18/

presentation/katsikas).

*28	 Aleksey Pesterev, Jacob Strauss, Nickolai Zeldovich, and Robert T. Morris. 2012. Improving Network Connection Locality on Multicore Systems. In Proceedings of

the 7th ACM European Conference on Computer Systems (EuroSys ’12), 337–350. (https://doi.org/10.1145/2168836.2168870).

*29	 Sangjin Han, Scott Marshall, Byung-Gon Chun, and Sylvia Ratnasamy. 2012. MegaPipe: A New Programming Interface for Scalable Network I/O. In 10th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 12), 135–148. (https://www.usenix.org/conference/osdi12/technical-sessions/presentation/

han).

*30	 Xiaofeng Lin, Yu Chen, Xiaodong Li, Junjie Mao, Jiaquan He, Wei Xu, and Yuanchun Shi. 2016. Scalable Kernel TCP Design and Implementation for Short-Lived

Connections. In Proceedings of the Twenty-First International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS

’16), 339–352. (https://doi.org/10.1145/2872362.2872391).

scheduling that starts in Step 1 of A, the scheduling

associated with user-space program startup originating

in Step 3 of A, and the system calls and associated

copying of memory between user space and the kernel

included in Steps 1, 2, and 4 of B.

□ Main use cases

As mentioned in the above caveat, protocol-related pro-

cessing—such as for TCP—is not performed on data that

the user-space program receives from the NIC. This is

actually quite useful when network functions such as a

router are implemented in software, and so packet I/O

frameworks are widely used in contexts like Network

Function Virtualization (NFV)*23. The research community,

for example, has developed packet I/O framework-based

NFV platforms such as FastClick*24, E2*25, NetBricks*26,

and Metron*27. Also, as described in the next section, pro-

tocol stacks that run on packet I/O frameworks have been

developed to enable applications like web servers to be

used in combination with packet I/O frameworks. Packet

I/O frameworks are also being used to speed up VM com-

munications, as discussed in Section 2.3.4.

2.3.3	 Rethinking Network Stack Design

■ Scaling in multicore environments

Many NICs let you create multiple packet queues to scale

performance in multicore environments, and dividing

them up for use by separate CPU cores makes it possi-

ble to avoid lock contention when attempting to access

the queues. Many high-performance NICs also imple-

ment a feature called Receive Side Scaling (RSS) in

hardware. RSS allows processing to be distributed by

steering received packets to specific queues according

to TCP connection or IP address. It is not enough to

separate the packet queues, however. There is only one

queue per socket for newly established TCP connections,

and performance does not scale if accept system calls

are issued to the same socket in parallel in a multicore

environment. To address this, systems such as Affinity-

Accept*28, MegaPipe*29, and Fastsocket*30 offer a means

of setting up TCP connection queues for each core, and

it has been shown that this makes it possible to scale

the performance of accept processing in multicore en-

vironments. MegaPipe*29 also enables batch processing

inspired by FlexSC*3, which I covered in Section 2.3.1.

■ Use of packet I/O frameworks

Researchers have studied ways of using packet I/O

frameworks to speed up programs like web servers, as

mentioned under “Main use cases” in Section 2.3.2.

Specifically, protocols like TCP/IP have been imple-

mented that can be incorporated into Step 2 under

“Program behavior” in Section 2.3.2, and this makes it

possible to eliminate processing costs as mentioned in

1717

© Internet Initiative Japan Inc.

*31	 Ilias Marinos, Robert N. M. Watson, and Mark Handley. 2014. Network Stack Specialization for Performance. In Proceedings of the 2014 ACM Conference on

SIGCOMM (SIGCOMM ’14), 175–186. (https://doi.org/10.1145/2619239.2626311).

*32	 EunYoung Jeong, Shinae Wood, Muhammad Jamshed, Haewon Jeong, Sunghwan Ihm, Dongsu Han, and KyoungSoo Park. 2014. mTCP: A Highly Scalable User-Lev-

el TCP Stack for Multicore Systems. In 11th USENIX Symposium on Networked Systems Design and Implementation (NSDI 14), 489–502. (https://www.usenix.

org/conference/nsdi14/technical-sessions/presentation/jeong).

*33	 Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, Arvind Krishnamurthy, Thomas Anderson, and Timothy Roscoe. 2014. Arrakis: The Operating

System Is the Control Plane. In 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 14), 1–16. (https://www.usenix.org/conference/

osdi14/technical-sessions/presentation/peter).

*34	 Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Christos Kozyrakis, and Edouard Bugnion. 2014. IX: A Protected Dataplane Operating System for

High Throughput and Low Latency. In 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 14), 49–65. (https://www.usenix.org/

conference/osdi14/technical-sessions/presentation/belay).

*35	 Adam Dunkels. 2001. Design and Implementation of the lwIP TCP/IP Stack. Swedish Institute of Computer Science 2, 77.

*36	 Kenichi Yasukata, Michio Honda, Douglas Santry, and Lars Eggert. 2016. StackMap: Low-Latency Networking with the OS Stack and Dedicated NICs. In 2016

USENIX Annual Technical Conference (USENIX ATC 16), 43–56. (https://www.usenix.org/conference/atc16/technical-sessions/presentation/yasukata).

*37	 Antoine Kaufmann, Tim Stamler, Simon Peter, Naveen Kr. Sharma, Arvind Krishnamurthy, and Thomas Anderson. 2019. TAS: TCP Acceleration as an OS Service.

In Proceedings of the Fourteenth EuroSys Conference 2019 (EuroSys ’19). (https://doi.org/10.1145/3302424.3303985).

*38	 Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett Witchel, and Thomas Anderson. 2017. Strata: A Cross Media File System. In Proceedings of

the 26th Symposium on Operating Systems Principles (SOSP ’17), 460–477. (https://doi.org/10.1145/3132747.3132770).

*39	 Timothy Stamler, Deukyeon Hwang, Amanda Raybuck, Wei Zhang, and Simon Peter. 2022. zIO: Accelerating IO-Intensive Applications with Transparent Zero-Copy

IO. In 16th USENIX Symposium on Operating Systems Design and Implementation (OSDI 22), 431–445. (https://www.usenix.org/conference/osdi22/presentation/

stamler).

*40	 George Prekas, Marios Kogias, and Edouard Bugnion. 2017. ZygOS: Achieving Low Tail Latency for Microsecond-Scale Networked Tasks. In Proceedings of the

26th Symposium on Operating Systems Principles (SOSP ’17), 325–341. (https://doi.org/10.1145/3132747.3132780).

*41	 Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and Hari Balakrishnan. 2019. Shenango: Achieving High CPU Efficiency for Latency-Sensitive

Datacenter Workloads. In 16th USENIX Symposium on Networked Systems Design and Implementation (NSDI 19), 361–378. (https://www.usenix.org/conference/

nsdi19/presentation/ousterhout).

*42	 Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay, David Mazières, and Christos Kozyrakis. 2019. Shinjuku: Preemptive Scheduling for μsec-

ond-scale Tail Latency. In 16th USENIX Symposium on Networked Systems Design and Implementation (NSDI 19), 345–360. (https://www.usenix.org/conference/

nsdi19/presentation/kaffes).

*43	 Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and Adam Belay. 2020. Caladan: Mitigating Interference at Microsecond Timescales. In 14th USENIX Symposium

on Operating Systems Design and Implementation (OSDI 20), 281–297. (https://www.usenix.org/conference/osdi20/presentation/fried).

in the kernel by using the kernel implementation for TCP/

IP protocol-related processing like that in Step 2 of A and

Step 2 of C. In 2019, researchers announced a TCP stack

implementation called TAS*37, which also uses DPDK*20

and operates in user space. In 2022, researchers pre-

sented a system called zIO*39 that extends TAS*37 and the

Strata*38 file system and makes it possible to eliminate

I/O-related memory copying without making changes to

existing applications. Researchers have also looked at

ways of optimizing the allocation of CPU cores to tasks

in order to achieve the low levels of communications la-

tency required in data-center settings, as demonstrated

by systems like ZygOS*40, Shenango*41, Shinjuku*42, and

Caladan*43. These systems also employ a TCP/IP stack

running on top of DPDK*20.

“Available cost reductions” in that section, resulting in

significant speed increases. In 2014, researchers pre-

sented user-space network stacks called Sandstorm*31

and mTCP*32. mTCP*32 offers a number of optimizations.

In addition to request batching as proposed in FlexSC*3, it

also divides TCP connection queues among CPU cores as

in Affinity-Accept*28 and MegaPipe*29, which I mentioned

in Section 3.3.1. Also in 2014, researchers presented

new OSes called Arrakis*33 and IX*34 designed to make it

faster to use devices. Both of these allow a network stack

based on a TCP/IP implementation called lwIP*35 to deliver

I/O directly to the NIC. In 2016, researchers presented a

system called StackMap*36 that uses a packet I/O frame-

work to adopt the program behavior described in Section

2.3.2 for packet sending/receiving while also offering

the benefits of the full-featured TCP/IP implementation

18

Vol. 60Dec.2023

2. Focused Research (1)

© Internet Initiative Japan Inc.

*44	 YoungGyoun Moon, SeungEon Lee, Muhammad Asim Jamshed, and KyoungSoo Park. 2020. AccelTCP: Accelerating Network Applications with Stateful TCP Off-

loading. In 17th USENIX Symposium on Networked Systems Design and Implementation (NSDI 20), 77–92. (https://www.usenix.org/conference/nsdi20/presenta-

tion/moon).

*45	 Mina Tahmasbi Arashloo, Alexey Lavrov, Manya Ghobadi, Jennifer Rexford, David Walker, and David Wentzlaff. 2020. Enabling Programmable Transport Protocols

in High-Speed NICs. In 17th USENIX Symposium on Networked Systems Design and Implementation (NSDI 20), 93–109. (https://www.usenix.org/conference/

nsdi20/presentation/arashloo).

*46	 Rajath Shashidhara, Tim Stamler, Antoine Kaufmann, and Simon Peter. 2022. FlexTOE: Flexible TCP Offload with Fine-Grained Parallelism. In 19th USENIX Sym-

posium on Networked Systems Design and Implementation (NSDI 22), 87–102. (https://www.usenix.org/conference/nsdi22/presentation/shashidhara).

*47	 Taehyun Kim, Deondre Martin Ng, Junzhi Gong, Youngjin Kwon, Minlan Yu, and KyoungSoo Park. 2023. Rearchitecting the TCP Stack for I/O-Offloaded Content

Delivery. In 20th USENIX Symposium on Networked Systems Design and Implementation (NSDI 23), 275–292.

 (https://www.usenix.org/conference/nsdi23/presentation/kim-taehyun).

*48	 Luigi Rizzo and Giuseppe Lettieri. 2012. VALE, a Switched Ethernet for Virtual Machines. In Proceedings of the 8th International Conference on Emerging Network-

ing Experiments and Technologies (CoNEXT ’12), 61–72. (https://doi.org/10.1145/2413176.2413185).

*49	 Dong Zhou, Bin Fan, Hyeontaek Lim, Michael Kaminsky, and David G. Andersen. 2013. Scalable, High Performance Ethernet Forwarding with CuckooSwitch. In Pro-

ceedings of the Ninth ACM Conference on Emerging Networking Experiments and Technologies (CoNEXT ’13), 97–108. (https://doi.org/10.1145/2535372.2535379).

■ Offloading processing to hardware

The sort of processing involved in TCP, such as connec-

tion state management, is relatively complex, putting

high loads on the CPU, so researchers have also ex-

plored an approach known as the TCP Offload Engine

(TOE) for offloading such processing to hardware de-

vices like NICs. In 2020, researchers presented a system

called Accell TCP*44, which allows processing related to

certain states—such as establishing TCP connections—

to be offloaded to the NIC, making it possible to perform

connection splicing and other such processing at high

speed. The researchers showed that this can mainly help

improve the performance of L7 load balancers. Also in

2020, researchers presented Tonic*45, a hardware de-

sign that enables the implementation of transport layer

protocols in the NIC. In 2022, researchers unveiled

FlexTOE*46, a TOE implementation that runs on smart

NICs, and 2023 saw researchers present IO-TCP*47, a

system in which the NIC, in addition to performing TCP

processing, is given direct access to storage hardware

to streamline content delivery workloads.

2.3.4	 Speeding up VM Communications

As Figure 4 shows, the main software components in

VM communications are virtual switches that multiplex

packet input/output on physical NICs, and a backend

that handles virtual NIC emulation. In this section, I go

over efforts to optimize these two components.

■ Speeding up virtual switches

Packet I/O frameworks, which I mentioned in Section

2.3.2, have had a huge impact in speeding up virtual

switches, and research has shown that applying packet

I/O frameworks around virtual switches can improve

performance significantly relative to conventional ap-

proaches. In the case of VM I/O as discussed in Section

2.2.2, virtual switches run in Step 2 of D and Step 3 of E,

so improving virtual switch performance can be a huge

help in enhancing VM communications performance. On

the research front, in 2012 researchers presented a vir-

tual switch called VALE*48 that can run on the netmap*21

API mentioned in Section 2.3.2, and 2013 saw the un-

veiling of CuckooSwitch*49, which uses DPDK*20. And in

1919

© Internet Initiative Japan Inc.

*50	 Michio Honda, Felipe Huici, Giuseppe Lettieri, and Luigi Rizzo. 2015. mSwitch: A Highly-Scalable, Modular Software Switch. In Proceedings of the 1st ACM SIG-

COMM Symposium on Software Defined Networking Research (SOSR ’15). (https://doi.org/10.1145/2774993.2775065).

*51	 Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou, Jarno Rajahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar, Keith Amidon, and

Martin Casado. 2015. The Design and Implementation of Open vSwitch. In 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI 15),

117–130. (https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pfaff).

*52	 Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator. In 2005 USENIX Annual Technical Conference (USENIX ATC 05), 41–46. (https://www.

usenix.org/conference/2005-usenix-annual-technical-conference/qemu-fast-and-portable-dynamic-translator).

*53	 Luigi Rizzo, Giuseppe Lettieri, and Vincenzo Maffione. 2013. Speeding up Packet I/O in Virtual Machines. In Architectures for Networking and Communications

Systems, 47–58. (https://doi.org/10.1109/ANCS.2013.6665175).

*54	 Stefano Garzarella, Giuseppe Lettieri, and Luigi Rizzo. 2015. Virtual Device Passthrough for High Speed VM Networking. In 2015 ACM/IEEE Symposium on Archi-

tectures for Networking and Communications Systems (ANCS), 99–110. (https://doi.org/10.1109/ANCS.2015.7110124).

*55	 Vincenzo Maffione, Luigi Rizzo, and Giuseppe Lettieri. 2016. Flexible Virtual Machine Networking Using Netmap Passthrough. In 2016 IEEE International Symposium

on Local and Metropolitan Area Networks (LANMAN), 1–6. (https://doi.org/10.1109/LANMAN.2016.7548852).

*56	 Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. 2007. KVM: the Linux Virtual Machine Monitor. In Proceedings of the 2007 Ottawa Linux

Symposium (OLS ’07).

*57	 Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu, Michio Honda, Roberto Bifulco, and Felipe Huici. 2014. ClickOS and the Art of Network Function

Virtualization. In 11th USENIX Symposium on Networked Systems Design and Implementation (NSDI 14), 459–473. (https://www.usenix.org/conference/nsdi14/

technical-sessions/presentation/martins).

*58	 Jinho Hwang, K. K. Ramakrishnan, and Timothy Wood. 2014. NetVM: High Performance and Flexible Networking Using Virtualization on Commodity Platforms. In

11th USENIX Symposium on Networked Systems Design and Implementation (NSDI 14), 445–458. (https://www.usenix.org/conference/nsdi14/technical-sessions/

presentation/hwang).

*59	 Kenichi Yasukata, Felipe Huici, Vincenzo Maffione, Giuseppe Lettieri, and Michio Honda. 2017. HyperNF: Building a High Performance, High Utilization and Fair

NFV Platform. In Proceedings of the 2017 Symposium on Cloud Computing (SoCC ’17), 157–169. (https://doi.org/10.1145/3127479.3127489).

QEMU*52/KVM*56, and showed that on ptnetmap, VMs

can achieve the 10Gbps wire rate of 14.88Mpps with

the smallest possible packet size. In 2014, researchers

also presented ClickOS*57, which uses VMs and replaces

netfront/netback, the VM communications mechanism

used in Xen*6, with a communications mechanism based

on VALE*48 and the netmap*21 API in order to speed up

communications throughput on NFV platforms. Also in

2014, researchers presented NetVM*58, an NFV platform

based on VMs, which uses DPDK*20 and QEMU*52/KVM*56

to speed up VM communications throughput. In 2017,

researchers presented a framework called HyperNF*59,

which, even in VM environments that use VALE*48, ad-

dresses the problem of suboptimal CPU utilization due

to the separation of the kernel threads running on the

host side as described in Step 2 of E and the threads

run on the VM’s virtual CPU. It does this by performing

the sort of virtual switch processing that happens on

VALE*48 within hypercalls that place it inside the virtual

CPU’s execution context. The researchers showed that

the increased efficiency of CPU utilization resulted in

high VM communications throughput.

2015, researchers presented mSwitch*50 as an extension

of VALE*48. Work to add support for DPDK*20 to Open

vSwitch*51, a widely used virtual switch implementation,

was also underway around this time.

■ Improvements to the virtual I/O backend

Around 2013, researchers made attempts to use virtual

switches like that described above under “Speeding up

virtual switches” in the VM communications backend.

One of these attempts uses VALE*48 as the network

backend on QEMU*52. Specifically, it replaces the ex-

isting virtual switch implementation in the OS kernel

shown in Figure 2 with the VALE*48 switch, and the

researchers showed that this can improve VM I/O per-

formance*53. With this optimization, however, the virtual

NIC assigned to the VM was of the existing type and

thus not all that compatible with VALE*48. The drawback

here was that, in Step 2 of D and Step 2 of E, it was

unable to eliminate the copying of packet data mem-

ory between the virtual switch and the virtual NIC, so

room to improve performance remained. To fill the gap,

in 2015 researchers implemented ptnetmap*54*55, which

assigns netmap*21 interfaces directly to the VM, for

20

Vol. 60Dec.2023

2. Focused Research (1)

© Internet Initiative Japan Inc.

*60	 PCI-SIG. 2010. Single Root I/O Virtualization and Sharing Specification. (https://pcisig.com/specifications/iov/single_root/).

*61	 Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric Chung,

Harish Kumar Chandrappa, Somesh Chaturmohta, Matt Humphrey, Jack Lavier, Norman Lam, Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri, Shachar

Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar, Nisheeth Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug Burger, Kushagra

Vaid, David A. Maltz, and Albert Greenberg. 2018. Azure Accelerated Networking: SmartNICs in the Public Cloud. In 15th USENIX Symposium on Networked Sys-

tems Design and Implementation (NSDI 18), 51–66. (https://www.usenix.org/conference/nsdi18/presentation/firestone).

■ Offloading processing to hardware

Many NICs implement a hardware packet switching func-

tion like Single Root I/O Virtualization (SR-IOV)*60, and

using this can often produce better performance than a

virtual switch implementation in software. Yet SR-IOV*60

only provides limited behavioral control of packet for-

warding between physical and virtual interfaces from

software, which can impede its usefulness in settings

where fine-grained control is needed, such as data cen-

ters. To address this, in 2018 researchers published a

paper on AccelNet*61, a system that uses smart NICs to

enable more flexible network control (the deployment

of AccelNet in commercial environments had apparently

begun in 2015).

2.4	Recent Work at IIJ Research Laboratory
In this section, I explain what sort of efforts IIJ Research

Laboratory is undertaking based on the past research

covered above.

2.4.1	 Integrating New OS Features and Existing Programs

As the preceding section illustrates, for over a decade

now the research community has been proposing designs

and implementations of new OS features that would re-

place existing mechanisms.

■ Problem

System call hooking is commonly used to apply new OS

features transparently to existing application programs.

2121

© Internet Initiative Japan Inc.

*62	 Kenichi Yasukata. 2021. A Method for Rapidly Hooking System Calls with Zero Call Drops. IIJ Engineers Blog. (https://eng-blog.iij.ad.jp/archives/11169, in Japanese).

*63	 Kenichi Yasukata, Hajime Tazaki, Pierre-Louis Aublin, and Kenta Ishiguro. 2023. zpoline: a system call hook mechanism based on binary rewriting. In 2023 USENIX

Annual Technical Conference (USENIX ATC 23), 293–300. (https://www.usenix.org/conference/atc23/presentation/yasukata).

*64	 Gabriel Krisman Bertazi. 2021. Syscall User Dispatch. (https://www.kernel.org/doc/html/latest/admin-guide/syscall-user-dispatch.html).

*65	 Salvatore Sanfilippo. 2009. Redis - Remote Dictionary Server. (https://redis.io/).

at virtual memory address 0, thus replacing syscall/

sysenter calls in the program with jumps to specific

hook processing routines. We found this mechanism to

produce loads 28–700x lower than conventional mecha-

nisms, such as binary rewriting techniques that use int3

instructions, ptrace, and Syscall User Dispatch*64. Also,

when we used these techniques to apply lwIP*35 and

DPDK*20 with Redis*65, a widely used key-value store, we

found that, relative to when there is almost no load from

system hooks, the conventional mechanisms caused a

72.3–98.8% load degradation vs. only a 5.2% degradation

with our proposed method.

2.4.2	 Speeding up VM I/O

The communications performance of VMs has improved

significantly over the last decade. Yet challenges remain.

■ Problem

The cost of exiting a VM context is considered to be a

cause of performance degradation in VM environments

But the existing system call hook mechanism does have

its drawbacks: it can cause significant application per-

formance degradation, and some system call hooks

can fail. These shortcomings limit the applicability of

unikernels, library OSes, and new network stack imple-

mentations like those discussed in previous sections,

which, as a result, prevents many people from enjoying

the benefits of the research work that has been done.

This problem makes it difficult to use existing technol-

ogies that could greatly improve software execution

efficiency, which would reduce the number of servers

needed and cut power consumption.

■ Solution

To solve this problem, we devised a new system call hook

mechanism called zpoline*62*63 that addresses the existing

mechanism’s drawbacks. zpoline*62*63 replaces the sy-

scall and sysenter instructions, which are two bytes

and used to issue system calls, with callq *%rax call

instructions (also two bytes) and sets up trampoline code

22

Vol. 60Dec.2023

2. Focused Research (1)

© Internet Initiative Japan Inc.

*66	 Kenichi Yasukata. 2023. The Path to Getting a Paper Accepted for ASPLOS 2023—Challenges and Solutions in the Sharing of Memory Between VMs. IIJ Engineers

Blog. (https://eng-blog.iij.ad.jp/archives/18819, in Japanese).

*67	 Kenichi Yasukata, Hajime Tazaki, and Pierre-Louis Aublin. 2023. Exit-Less, Isolated, and Shared Access for Virtual Machines. In Proceedings of the 28th ACM

International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 3 (ASPLOS 2023), 224–237. (https://doi.

org/10.1145/3582016.3582042).

that has yet to be eliminated. In specific terms, the exit

generated in Step 2 of E in Section 2.2.2 hinders I/O

performance, which limits the performance of workloads

running on the VMs. If the I/O performance of the VM

itself is low, this limits the maximum achievable perfor-

mance even when using the mechanisms described in

Sections 2.3.1 and 2.3.3 to streamline processing re-

lated to the network running on the VM. And this is

a serious issue given that a lot of computational work

currently runs on VMs within data centers.

■ Solution

To address this, we developed a mechanism dubbed

Exit-Less, Isolated, and Shared Access (ELISA)*66*67,

which allows the VM to access NICs shared between

VMs without exiting the VM context. With our proposed

method, the VMFUNC CPU instruction is used to create

a new context within the VM in which only behavior

permitted by the host can happen, and the NIC can only

be accessed within this new context. This prevents VMs

from performing malicious behavior through the NIC.

Our method also implements methods for VMs to access

devices in software, so it can provide greater behavioral

flexibility than SR-IOV*60. We showed that implementing

VM communication functions with our method can yield

up to 163% performance gains compared with a mecha-

nism that is similar to HyperNF*59 in that it exits from the

VM context with every VM I/O request.

2.5	Conclusion
I first took a brief look at the general behavior of system

software communications functions, and then examined

how past research in system software communications

since the early 2010s has improved these functions,

and then rounded out the discussion with a look at IIJ

Research Laboratory’s recent work in this area.

Kenichi Yasukata

Researcher, Research Laboratory, IIJ

2323

© Internet Initiative Japan Inc.

3.1	Introduction
Over IIJ’s history, we have provided Internet connectivity

alongside a range of related services with a focus on com-

munications. We have continued to enhance and expand the

service hosts used to provide these services over the past

30 years, which now encompass several thousand servers.

We also provide computing resources to customers through

the IIJ GIO cloud service, the infrastructure for which has

also grown to comprise tens of thousands of servers in the

decade since launch.

In this article, we take a look back at IIJ’s 30-year journey. The

first half describes how IIJ’s service hosts have changed with

the times and the innovations we have made in the process.

The second half looks at how the IIJ GIO cloud platform has

evolved through successive generations to become the

large-scale service infrastructure it is today.

3.2	1990s: Where it all Started
■ The era of dedicated systems for each service

The number of service hosts we deployed to provide email

and web services increased rapidly from the time IIJ was

founded in 1992. By the end of the 1990s, we had over 200

racks housing several thousand servers distributed across

multiple data centers in Tokyo to provide IIJ’s services. We

maintained separate racks for each service and procured and

built the equipment on that basis, which meant that work

had to be performed onsite whenever the configuration

changed. With this in mind, we sought to optimize server

operations by using conveniently located data centers in and

around Tokyo that offered easy physical access.

In the early days, we used UNIX workstations as our servers,

but we later transitioned to PC/AT-compatible machines and

PC/AT-based industrial PCs for cost performance reasons.

3.	Focused Research (2)

Evolution of the IIJ Cloud—Commemorating 30 Years

Figure 1: Evolution of IIJ’s Cloud Services

2000 2005 2010 2015 2020 2025

IIJ GIO cloud service

Resource on-demand service IBPS

 1st generation

2nd generation

3rd generation

Era of separate hosts Next Host Network (NHN)
2008
Birth of NHN

2009
IIJ GIO Component Service rolls out

2004
Data Management Service features enhanced (DMS2)

2007
Server Management Service (SMS) rolls out 2021

IIJ GIO P2 Gen.2 rolls out

2010
IIJ GIO Hosting Package Service rolls out

2012
IIJ GIO Component Service
Virtualization Platform VW Series rolls out

2012
NHN Gen2 rolls out

2014
Type-N series rolls out

2015
IIJ GIO P2 rolls out

2000
Data Management Service (DMS)
Network Management Service (NMS)
operation & management services roll out

2017
Type-N2 rolls out

2018
Type-N3 rolls out

2018
IIJ GIO P2
IIJ GIO P2 expanded lineup and West Japan service rolls out

2020
P2 VW Series features enhanced
Backup Set / VW Option rolls out

2021
IIJ GIO P2 registered with ISMAP

2019
Type-N4 rolls out

Separate racks for each service,
equipment procured/built separately

H
os

te
d

se
rv

ic
es

C

lo
ud

 s
er

vi
ce

s
fo

r c
us

to
m

er
s

24

3. Focused Research (2)

Vol. 60Dec.2023

© Internet Initiative Japan Inc.

As rack-mounted PC servers were not yet commercially

available, IIJ staff often assembled the servers themselves

using off-the-shelf parts. A variety of work was performed

at the Otemachi data center: we would replace server

motherboards and CPUs, IIJ staff would assemble RAID

arrays themselves, and we had teams and systems in place

to ensure that machines could be replaced immediately if they

went down. While we were able to set up our equipment on a

low budget, we also encountered more and more physical

problems like power supply and cooling fan failures, which

can in turn lead to hardware failures.

The OSes installed on commercial UNIX workstations at

the time were not all that featureful given the price, and

it was difficult to make improvements on our own. And

Linux had only just appeared on the scene and was not yet

production ready. So we decided to obtain a license for PC-

BSD, a derivative of BSD (a collection of software created

by a group of developers at the University of California,

Berkeley), and reconfigure it for use as a server ourselves.

This greatly increased the flexibility of our servers. Both

our software and hardware were handcrafted. IIJ was

probably the only company in Japan at the time that was

quite so particular about the cost and quality of its servers.

This was at a time when the TeleHodai service, which offered

fixed-rate phone charges after 11pm, was in widespread

use in Japan, and 11pm was thus the peak for personal

website traffic. So while everything worked smoothly during

the day, once 11pm rolled around, the great influx of web

server traffic ramped up server loads, and this would some-

times result in circuit breakers being tripped due to excessive

power consumption and entire racks thus losing power.

The mainstream storage options at the time were on-board

server storage and, where high capacity was required,

DAS, whereby external storage was connected to the

servers via SCSI cables. In the 1990s and 2000s, we

had to plan and budget around questions like how much

physical capacity we needed and how much capacity

per server, how much it would cost if we installed some

number of servers in a location and configured them in a

certain way, which hardware vendor’s servers we should

use to make sure we stayed within budget, and where we

should locate our data centers. Experiencing major storage

failures taught me firsthand about the absolute need for

backups and adequate system sizing.

3.3	2000s: Shedding the Dedicated-service-hosts 	
	 Approach
■ Advent of the Next Host Network

The Next Host Network (NHN) is a platform for IIJ services

that we developed in 2008 to streamline service host

operations, and it represented a redesign of our server

configurations and server operation network. Up to this

point, we had procured equipment and built systems on

a service-by-service basis, as discussed above, and this

meant that overall infrastructure costs were continuously

on the rise. Any configuration change triggered the need

for onsite work, and the operation of any one system was

defined in isolation from the others, resulting in a convoluted

setup. And while we had installed sufficient capacity to

meet anticipated growth in demand for each individual

service, it was difficult to repurpose equipment when our

demand forecasts failed to pan out, and maintenance costs

were also rising as we generally entered into maintenance

contracts on the equipment we selected. The cost of

maintaining our physical facilities also continued to soar

because we were using conveniently located data centers

in urban centers that we could get to quickly whenever

system problems occurred.

We needed to fundamentally reconsider the nature of our

infrastructure if we were to break away from this chron-

ically high cost structure. This led to the implementation of

NHN, designed to solve the myriad problems we faced by

consolidating our disparate systems and making it possible

to provide an equivalent level of service even while running

our operations remotely. The basic concept we adopted was

to provide flexible service hosts, and we embarked on a

four-year plan to progressively replace thousands of servers

distributed across our data centers in Japan, consolidating

data that had been stored on DAS systems into iSCSI

storage and making this available over an IP network, along

with newly installed diskless servers, in a flexible manner

according to service demand.

The basic design principle, based on the assumption that

servers would inevitably fail, was to redesign storage to be

highly reliable and the network to be simple and uncompli-

cated. We wanted to reduce onsite work and switch to a

model that would allow operations to basically be made re-

mote. Server equipment has a wide variety of failure points,

and because failures are unavoidable and there are limits

to the extent to which failure rates can be reduced, we

25

© Internet Initiative Japan Inc.

moved between units. Uplink speed was 1Gbps, and so

traffic growth also started to put pressure on upstream

bandwidth.

NHN Gen2: The second generation of infrastructure, launched

in 2012 and designed to solve the problems of NHN Gen1.

The units had the same configuration as Gen1, but rack

storage efficiency was doubled (to accommodate 40 units

per rack). Characteristically, Gen2 adopted Juniper’s Virtual

Chassis (VC), had a 10Gbps uplink speed, had racks that

would accommodate non-NHN standard service-specific

equipment, redundant power supplies, and NIC bonding.

However, NHN Gen2 did have a problem in that failures in

switches used for top-of-rack (ToR) switching would cause

the entire network to be disconnected. The failure would

spread to the entire VC unit, resulting in a situation that

took quite a bit of time to recover from.

NHN Gen2 Container: A version of NHN optimized for the

IZmo/S containerized data-center modules deployed at Matsue

Data Center Park. Congruent with the number of racks

installed in IZmo/S modules, each unit comprised eight racks

and 288 servers (later, 16 of the servers were removed and

four storage units added). Although NHN Gen2 Container’s slim

container dimensions make it space efficient, the narrowness

of the aisles inside the containers made maintenance particu-

larly difficult, which caused problems on the operations front.

3.4	2010s – Present: Type-N, a Next-generation 	
	 Service Platform
■ Shifting to Type-N service hosts

In October 2014, we launched the new Type-N series, the

third generation of NHN infrastructure. Until this point, we

had provided the servers in bare-metal form, but starting with

the Type-N series, we also started providing them as virtual

machines (VMs). This meant we could also support reduced

spec applications that did not require a full bare-metal

server. The characteristics of each Type-N generation are

outlined below.

Type-N: NHN’s third generation of infrastructure, launched

in 2014. Until this point, L2 switches were housed in

designed the system so that the inevitable failures would only

have a small impact. We moved away from having assigned

racks for each service and adopted a server pool system to

improve storage efficiency, making it possible to consolidate

onsite work and outsource it to contractors. We standardized

server configurations to reduce the configuration management

workload, and added virtualization technology into the

mix to enhance flexibility, enabling post-installation work

to be accomplished remotely. Individual HDD failures are

inevitable with any storage device, but we needed to

adopt a more reliable configuration to avoid failures that

would lead to service outages. We used PXE Boot and iSCSI

storage with controller and path duplexing to create an

inexpensive, highly reliable diskless server environment,

making it possible to recover by simply switching server

devices in the event of failures. In our experience, edge switch

failures had not been all that common, so we adopted a

simple configuration that only used NIC redundancy settings

and the like where necessary. We introduced a mechanism

for automatically rewriting switch VLAN settings based on

config data to reconfigure the network without changing the

physical wiring, making it possible to reduce configuration

errors and operational costs. NHN primarily used x86 servers

from hardware vendors with strong cost performance. The

only OSes available were Linux distributions likeCentOS, but

Windows Server and VMware platforms also later appeared.

We selected low-end but highly maintainable storage options

to simplify storage maintenance tasks for which we had

previously relied on experts, making it easier for IIJ staff to

perform maintenance themselves and thus helping to reduce

annual maintenance costs. The key characteristics of each

NHN generation are outlined below.

NHN Gen1: The first generation of NHN infrastructure,

launched in 2008. Gen1 adopted iSCSI storage in order

to eliminate DAS, and provided two storage areas: basic

(60GB) and expanded (160GB) storage. NHN Gen1 units

were configured as a set of four server racks and four

storage racks comprising a single unit, but once inventory

resources were exhausted, it was impossible to expand in

the same L2 area, so it was difficult to adjust inventory

on a unit-by-unit basis. Server instances also could not be

26

3. Focused Research (2)

Vol. 60Dec.2023

© Internet Initiative Japan Inc.

the router. With Type-N, the L2 switches were housed in

the L2 core switch, making it possible to provide the same

L2 surface between units. Connectivity with users’ racks

improved, and inventory resources no longer needed to be

adjusted on a unit basis. In addition to ordinary servers, Type-N

also made available high memory servers and storage

servers equipped with a large number of HDDs. There were

problems, however: performance of the switches used for

the servers’ 1GbE NICs was poor, and the maximum number

of connectable devices was low.

Type-N100: A broadband infrastructure option based on

Type-N and developed for content streaming services. The

name refers to the fact that this option provided 100Gbps

infrastructure. Key features were that it used dedicated

load balancer units and MPLS and allowed connections to

IIJ backbone routers, which handle direct IX connections.

Systems had to do diskless PXE booting and run the entire

OS in memory (no iSCSI storage provided), and a 1TB SSD

was provided for temporary logging and caching purposes.

Type-N2: The fourth generation of NHN infrastructure, launched

in 2017. Notably, we did away with the 1G network and went

with full 10G all the way to the edge. High-memory servers

were set up to support the addition of units for clustered

applications based on VMware, and hardware performance

enhancements led to improved system consolidation rates.

A problem with Type-N2, however, was that storage perfor-

mance did not meet the requirements of some applications.

Type-N3: The fifth generation of NHN infrastructure, launched

in 2018. We adopted what were at the time the latest Intel

CPUs and installed flash storage (NVMe SSDs) for a huge

jump in I/O performance, and also aimed for significant

improvements in network performance. With Type-N3, we

did away with the separate basic and expanded storage

areas and provided the entire storage area as a single PV

(physical volume).

Type-N4: The sixth generation of NHN infrastructure, launched

in 2019. We again used the latest Intel CPUs at the time

and also adopted new OCP-compliant servers (described

below), reducing procurement costs and power consumption.

We increased network speeds between the edge and core

from 10–20Gbps previously to 40Gbps, and we used

chassis switches for the core switches to future-proof

against future capacity expansions.

From 2019, we adopted mid-range-class storage systems

for our main storage. In 2021, we adopted the successor

model of storage (from the same manufacturer) that we had

used in NHN’s first iteration, naturally for its performance

and reliability, and also because, on the operations front, we

knew it would fit in nicely with our existing procedures and

frameworks. Storage products that support self-maintenance

operations, including OS and firmware self-updates, also

offer strong cost benefits for NHN, where our basic

philosophy is to build and run the systems ourselves.

■ Adoption of OCP servers

The OCP (Open Compute Project), formed in 2011, is an

organization that proposes new server standards from

hyperscalers like Facebook. Compared with traditional servers

primarily developed and produced by manufacturers, the OCP

uses a different scheme whereby the cloud service providers

that use the servers are heavily involved in the selection,

procurement, and manufacturing of the components.

While we were interested in OCP servers, the purchase

prices were too high to justify the expense when compared

with products from ordinary server manufacturers, and

this remained the case up until about 2017. But as 2018

rolled around, with the Japanese yen appreciating and the

semiconductor industry experiencing an inventory glut, the

price of DIMMs, SSDs, and other such components slipped

into decline. And in light of these market conditions, we

started to give OCP servers serious consideration. We saw

a multitude of issues and concerns: we would be directly

exposed to exchange rates; on the hardware front, we

would need new OCP-compatible racks and central power

supplies, and BIOS and BMC tests had to be performed

by the buyer; and on the operations front, maintenance

was limited to parts replacements (self-maintenance), and

we would have to deal with the ODM vendors in English.

27

© Internet Initiative Japan Inc.

*1	 The service was called iBPS at launch but rebranded to IBPS in 2002.

conventional offerings) development times and initial

investments and meet the demands of companies looking

to rapidly deploy Internet businesses.

■ IBPS’s four main services

•	Data Management Service (DMS): IIJ’s storage resources

provided on-demand. DMS optimized storage costs

by providing storage that allowed the connection type

(NAS/SAN), capacity, and performance to be selected

according to the customer’s service level and usage

patterns. DMS also provided high-speed backups on

separate disks, freeing customers from the need to

perform the old labor- and time-intensive tape backups.

•	Network Management Service (NMS): IIJ’s network

resources provided on-demand. NMS pooled load bal-

ancers, firewalls, etc. and provided them as functions.

Typical configurations of these were also provided as

low-cost, packaged options.

•	Server Management Service (SMS): IIJ’s server resources

provided on-demand. SMS employed a provisioning

tool to manage customer-specific server configurations,

thus semi-automating the server building task and

making systems tailored to customer-specific needs

available with minimal lead times.

•	Operations and Management Service: This service

provided operation and monitoring of customer

systems built on IBPS to help reduce total cost of

ownership.

Customers were able to use the resources they needed

when they needed them, and cancel resources they no

longer needed. Users were freed from the risk of ownership.

IBPS was what we would now call an IaaS offering. We

originally had UNIX servers (SPARC Solaris) on the frontend,

and although we later migrated to x86 servers, UNIX

servers remained on the middle/backend for database

purposes. We had been using rack-mounted servers, but

in August 2007, we introduced blade servers—a first

for large-scale server infrastructure in Japan—for SMS,

through which we offered the first resource on-demand

servers in Japan. We liked the ability to save space with

blade servers, and the fact that you simply had to insert

the CPU blade into a pre-configured chassis to get them

working.

And yet we determined that the benefits would outweigh

all these concerns, leading us to the decision to deploy

OCP servers. When we actually deployed OCP servers,

we saved up to 35% on procurement costs and cut power

consumption by up to 30%. For procurement costs in

particular, these savings were far beyond the 10% we had

anticipated, and this spurred us to expand our deployment

of OCP servers. At present, however, there are some enter-

prise applications and areas to which they are clearly not

suited. In the summer of 2019, we made multi-vendor

arrangements for OCP servers like we had for existing

equipment to diversify the technological and procurement

risks we face.

Next, let’s look at the evolution of IIJ GIO, our cloud platform

for customers.

3.5	2000s: Pioneering IaaS (Infrastructure as a 	
	 Service)
■ Launch of the IBPS resource on-demand service

In the late 1990s, the advent of server-side Java and ASP

made Internet payment infrastructure a possibility, and

thus a lot of e-commerce sites based on dynamic website

technology began to appear. The system architecture of

e-commerce sites was fairly similar, regardless of how

the customer’s site was configured, so we realized that

it would be more efficient to set up the equipment and

resources in advance to have them ready to deploy in the

form of system components so that we could provide the

necessary combination of those components whenever a

customer made a order. With this in mind, we created the

resource on-demand service IBPS (Integration & Business

Platform Service)*1, the predecessor to our present-day

cloud service, IIJ GIO.

IBPS was launched in March 2000 by then group company

IIJ Technology Inc. (absorbed into IIJ in April 2010). The

service offered everything an Internet business would need,

from server equipment through to software, payment/

logistics components, and monitoring, operations, and

management. The necessary components were combined

in accord with the customer’s needs to form a complete

system, which was provided as an outsourced service.

This made it possible to more than halve (relative to IIJ’s

28

3. Focused Research (2)

Vol. 60Dec.2023

© Internet Initiative Japan Inc.

*2	 This was also at a time when Moore’s Law worked well.

In October 2003, we expanded the Data Management Service

we had been providing since launching IBPS and added a

large-scale storage service with a total capacity of 40TB. For

midrange storage, we adopted storage virtualization software

to enable flexible resource management and reduce costs.

In 2007, we upgraded the Data Management Service,

halving the per-GB storage costs*2. The Data Management

Service originally provided SAN and NAS options, but as

services offering high-quality Fiber Channel (FC) at reason-

able prices became available, the use of FC-SAN storage

grew. On the NAS front, we initially used a combination

of commodity servers and cluster software or dedicated

NAS storage appliances. Few of the NAS products around

in the early 2000s supported volumes over 1TB, so if you

wanted large-capacity NAS, you would build a NAS system

by combining commodity servers, FC-SAN storage, and

cluster software. In the late 2000s, large-volume support

started coming to NAS products, prompting a shift toward

NAS-specific storage appliances.

■ 2008 onward: L2 ring protocol

From 2008, we used an L2 ring protocol configuration for

our service platform network technology. The multi-stage

ring physical configuration was suited to the scale of data

centers in Japan. This had the advantage of making it

possible to build an efficient system while also making it

easy to expand the system, whether at the edge or the

core. With node interfaces of 10GbE+, however, there

were fewer models of equipment to choose from than with

1GbE or lower, so a disadvantage was that this limited

the number of accommodated nodes. Many L2 ring con-

figurations are manufacturer-specific, and they are not

inter-compatible. The problem with this was that it made

vendor lock-in likely and thus limited the range of available

equipment options.

■ Storage array systems for a variety of platforms

In terms of service platform storage technology, we have

used storage array systems since launching IBPS in 2000.

Figure 2: L2 Ring Protocol Configuration (2008–)

Legend

Primary

Secondary

Aware port

P

S

AVLAN

Floor Floor

A

A P PP A

A

A

A

A

A AS S

A A

S

Conceptual image

Edge EdgeCore Core

EdgeCoreEdge Core

A

AA

29

© Internet Initiative Japan Inc.

We used several types of mainly high-end – mid-range

storage systems to suit performance requirements, and

also to diversify procurement and technology risks. Today,

we also use storage array systems on the IIJ GIO and NHN

platforms, with storage capacity continuing to increase.

When first introducing a storage option, we would contract

all of the configuration changes and monitoring out to the

vendor, partly because of our initial lack of knowledge. But

this style of operations resulted in a fair amount of cash

outlay and lead time just to create, for example, a single

LUN, so IIJ staff learned how to operate the storage prod-

ucts so that we could make storage configuration changes

in-house, which reduced operating costs. Initially, we used

IIJ’s standard monitoring service to monitor storage, but as

the service continued to grow, the inevitable faults started

to overwhelm this standard service, and it ended up taking

longer for the storage operations team to recognize faults

whenever they occurred. We therefore built a dedicated

monitoring system for our storage equipment.

3.6	2010s: Cloud Computing Takes Off
■ Birth of the IIJ GIO cloud service

We have overcome a myriad of challenges through our

experience in the IaaS business and the evolution of our

services platforms spanning more than a decade, including

the deployment of virtualization and provisioning systems

in IBPS services, the development of in-house monitoring

systems, and large-scale upgrades to server, network,

and storage equipment. This process ultimately culminated

in the development of the IIJ GIO cloud service, which

embodies everything we learned. IIJ GIO harnesses the

advantages of cloud computing to make high-service-level

system environments with high availability and strong security

available to users who need business-ready infrastructure

at a lower cost, without the need for them to own IT assets

themselves.

Our first step was the November 2009 launch of the IIJ

GIO Component Service, a private cloud service geared to

the fine-grained needs of business customers. This was

followed by the June 2010 launch of the IIJ GIO Hosting

Package Service, an inexpensive public cloud service with

packaged options.

■ IIJ GIO Hosting Package Service

The IIJ GIO Hosting Package Service makes it easy for users

to build information systems infrastructure for e-commerce

sites and high-performance online businesses simply by

selecting pre-packaged plans online according to the

needs of their application. The service architecture makes

full use of virtualization technology to provide the flex-

ibility to select server resources according to system

requirements, and control functionality developed by

IIJ makes it possible to automatically allocate multiple

server resources on a Layer 2 network. We also adopted

open source software (OSS) and developed in-house pro-

visioning tools for controlling resource allocations and

management tools for automating complex operations

and monitoring, leading to substantial efficiency gains

on both the operations and cost fronts. By consolidating

our infrastructure, we were also able to reduce hardware

procurement costs and set affordable service prices,

starting from 8,000 yen per month for a virtual server.

In September 2013, we released an IaaS API to meet the

needs of users wanting to create their own programs to

automate routine tasks, such as the deployment of multiple

virtual servers at once.

■ IIJ GIO Component Service

The IIJ GIO Component Service provides servers, storage,

and networks in the form of system “components” to create

a highly flexible IaaS-based enterprise cloud service that

allows users to combine the best components for their

needs from a variety of options. The service can also be

used as a private cloud by connecting it directly to the

user’s on-premises environment via a wide area network.

The main components of IIJ the GIO Component Service

are the base servers and, launched in August 2012, the

Virtualization Platform VW Series (the VW Series). Two

30

3. Focused Research (2)

Vol. 60Dec.2023

© Internet Initiative Japan Inc.

*3	 ICU is a measure of CPU performance. 24 ICU is equivalent to six cores x 2.

types of base servers were made available: V Series virtual

servers that allow users to share physical servers with other

customers, and X Series physical servers that give users

exclusive use of server hardware units. With the VW series,

we provided customers with a private environment with

VMware vSphere ESXi (US-based VMWare’s virtualization

software) on the physical servers along with a VMware

vCenter Server management server, all with administrator

privileges. This provided a level of flexibility in systems

configuration comparable to that with on-premises envi-

ronments, ensuring it could be used with confidence not

only by those looking to integrate servers or build a cloud

from scratch, but also by users who already maintained

and operated virtual infrastructure using VMware.

We also provided functions other than server resources as

IaaS offerings. The first is the Network Add-on feature,

which enhances the network functions provided as stan-

dard on base servers and the VW Series. Switching from a

shared Internet connection line to a dedicated line (private

connection) lets users safely connect to their on-premises

environment via an Internet VPN or closed network (wide

area network). They can also use multi-carrier configura-

tions that divide WAN lines among carriers. The second

is the Storage Add-on feature, which broadly offers two

options: Standard, which provides high-end storage of the

sort that financial institutions use, and Basic, a mid-range

offering suitable for data management on ordinary web

systems and the like. These storage options are provided

as NAS, FC-SAN, or iSCSI-SAN storage over the network.

The third is the Database Add-on feature, which pro-

vides Oracle Database and MySQL as DBaaS (DataBase

as a Service) offerings. When we launched this feature

in July 2012, we became the first operator in Japan to

offer Oracle Database—which commands a dominant share

of the Japanese database market—for a monthly fee. We

made it possible for users to lower their initial investment

in database licenses, reduce maintenance costs, and

avoided investment risks. With this service, IIJ draws on

its extensive experience installing and operating relational

databases to design and operate database instances and

make them available on IIJ GIO virtual servers. We also

made it possible to connect to existing on-premises envi-

ronments via a closed network or Internet VPN. In May

2014, we revised our pricing to reduce monthly fees by

up to 56%, and we continued to actively develop the

services, adding Microsoft SQL Server to our lineup in

October of the same year. The fourth is the License

Add-on feature, which provides software licenses for use

on the cloud for a monthly fee. We offer Microsoft SPLA

licensing as well as licenses for in-demand products and

services from vendors like Red Hat, VMware, Arcserve,

and Trend Micro.

In January 2014, we bolstered the IIJ GIO Component

Service lineup to add Base Server V Series G2 (V Series

G2), which built on and enhanced the existing Base Server

V Series. V Series G2 was compatible with Windows Server

2012 R2, then the latest version, and compared with the

previous series’ Windows lineup, offered increased CPU,

memory, and disk capacity, and had up to triple the CPU

performance at 24 ICU*2 and up to six times the memory at

a maximum of 48GB. We also made the server equipment

available at sites in both East and West Japan, so it was

viable for disaster recovery applications as well.

■ Release of IIJ GIO Infrastructure P2, our 2nd generation

cloud service

In October 2015, we overhauled IIJ GIO’s IaaS offerings

and launched a new lineup under the IIJ GIO Infrastructure

P2 (IIJ GIO P2) banner. Up to this point in our IaaS lineup,

we had provided the public cloud IIJ GIO Hosting Package

Service, which users could easily deploy online, and the

bespoke IIJ GIO Component Service, which allowed users

to combine a variety of IT resources to configure a complete

system. With IIJ GIO P2, however, our aim was to provide a

service covering the full gamut of user needs by combining

improved public cloud reliability and processing performance

with private cloud offerings that can be requested and deployed

immediately online. IIJ GIO P2 comprises public resources

31

© Internet Initiative Japan Inc.

Pricing for the custom OS image storage area is based on

usage, so users avoid unnecessary costs.

Private resources: A highly reliable private cloud, suitable

even for mission-critical systems, to which business customers

can easily migrate systems built in on-premises environments.

We offer a lineup of user-dedicated resources with a focus

on VMware virtual environments and physical servers.

Users can also request the resources using an online

interface, something that was not possible with the IIJ

GIO Component Service. Via the control panel, users can

access services instantly (on the standard model) and

self-manage their server resources, adjusting the amount

they need in daily increments. IIJ GIO P2 offers enhanced

performance specs compared with the IIJ GIO Component

Service. Users can select CPUs supporting up to 24 cores,

192GB of memory, and network bandwidth of 10Gbps. Disk

and other server specs can also be customized online. By

increasing installed memory capacity to facilitate greater

server consolidation, we made it possible for users to

design and build servers to their system requirements

themselves.

■ Expanded IIJ GIO P2 lineup and West Japan launch

In June 2018, we enhanced the performance of the

Virtualization Platform VW Series (P2 VW Series) servers

provided as part of IIJ GIO P2, adding VW48-1024-FC-

10G—which doubled the number of available CPU cores to

48—and VW96-1024-FC-10G—equipped with 96 cores.

We released the former on June 1, 2018, and the latter

in October 2018. The added options were geared toward

anticipated demand for data-processing infrastructure with

high core counts and high memory capacity for applications

such as AI information processing and SAP S/4 HANA.

Also in June 2018, we launched IIJ GIO P2 public resources

in the West Japan region, adding private resources and

storage resources in October that year. The East and West

Japan regions are connected by a private backbone service

provided by IIJ, and the inter-regional broadband network

is made available free of charge. This expansion also broad-

ened the range of viable use cases. For example, users could

offering shared resources primarily through virtual servers,

private resources offering dedicated VMware virtual en-

vironments and physical servers, and storage resources

available on all servers in both the public and private re-

sources offerings. Users can select the optimal combination

of resources to build their systems. IIJ GIO P2 also offers

excellent external connectivity, with multi-carrier support

and private segment extensibility. It makes it possible for

users to seamlessly integrate their own on-premises systems

and third-party cloud service environments.

Public resources: These are shared resources primarily available

on virtual servers, constituting a public cloud adaptable to a

wide variety of use cases—from development environments

and simple web services to platforms for online games and

e-commerce sites requiring high I/O performance. Users

can choose the best server resources for their needs from

three characteristic types.

•	Performance guarantee type: For users that require

stable processing performance, this resource type

provides virtual servers to which CPU resources will

always be reliably allocated. It offers peace of mind for

a fixed monthly fee.

•	Best effort type: This resource type uses CPU cycle

distribution to provide low-cost virtual servers. Pricing

is based on usage in one-hour increments so that

users can optimize cost outlays.

•	Dedicated type: This type provides dedicated virtual

servers to users that require high I/O performance capable

of withstanding heavy workloads. These virtual servers

run in secure server environments physically separated

from other users’ servers and are equipped with SSDs or

SanDisk high-speed flash storage.

Users can combine the three server types and switch among

them at will via an online interface. They can also capture

OS images from running virtual servers and keep them in a

dedicated storage area, enabling the rapid deployment of

new virtual servers based on those images. This reduces

operational workloads, and enables rapid scaling out during

times of heavy workloads and rapid patch deployment.

32

3. Focused Research (2)

Vol. 60Dec.2023

© Internet Initiative Japan Inc.

now configure systems based on their business continuity

plans (BCP) by using services across sufficiently geographi-

cally separate regions.

In July 2020, we enhanced the P2 VW Series to add the

Backup Set / VW Option, facilitating easy, cost-effective VM

backups. The Backup Set / VW Option uses RCDM (Rubrik

Cloud Data Management) to provide the components needed

to back up VMs in a single package. With this option, users

can simply select the required plan from the backup settings

menu to enable easy backup and restore operations. The

acquired data is encrypted and stored on backup servers in

IIJ’s cloud, eliminating the need for users to build and operate

backup systems, thus reducing costs and workloads.

■ From L2 MLAG to L2 over L3

From 2014, we used L2 MLAG as our service platform’s

network technology. An advantage of this is that decent

scale can be achieved even with 10GbE+ node interfaces.

MLAG is implemented by the data center switch manufac-

turer, so both the hardware and software are optimized for

data centers, but it must be noted that the designs are not

suited to all types of facilities. They are basically designed

for fairly large floor areas, so depending on the area of the

floor on which you intend to install your equipment, as well

as power supply and cooling capacity, it might not be pos-

sible to install enough equipment to use up all switch ports.

So unless you can design and configure the floor to use

chassis (assuming the number of accommodated nodes is

determined), it’s easy to see how you can get into a situa-

tion in which you can’t use the equipment efficiently.

From 2017, we adopted an L2 over L3 configuration. While

this offers the same benefits as MLAG, its strength lies in

being able to design a flexible physical topology using L3

technology, which has a long and proven track record on

the Internet. The VxLAN implementation at that time had

design constraints, however. The standard implementation

was not mature enough to enable dynamic control of, for

instance, which VLAN each VTEP is configured for, so our

design positioned the VTEPs in locations that would allow

them to realistically be managed with static settings.

Figure 3: L2 MLAG Configuration (2014–)

Pod1 VLAN Pod2 VLAN

Floor Floor Floor Floor

L3 connection with other pods

MLAG

40GbE
x2

Extern
Box Type

Extern
Box Type

Extern
Box Type

Extern
Box Type

10GBASE-T

x40
・・・
Racks

10GBASE-T

10GBASE-SR

x40
・・・
Racks

10GBASE-T

x40
・・・
Racks

Core
chassis Type

ToR
Box Type

Core
chassis Type

ToR
Box Type

Core
chassis Type

Core
chassis Type

ToR
Box Type

ToR
Box Type

ToR
Box Type

ToR
Box Type

ToR
Box Type

ToR
Box Type

33

© Internet Initiative Japan Inc.

proprietary API. The storage and FC switches we were using

at the time did not support SMI-S or an API out of the box

and instead required separate (expensive) applications, so we

used the command line applications that came as standard

with the storage products. The input and output capabilities

of such command line applications were not really created

with humans in mind, and the output in particular was

often in a format that is extremely difficult to handle with

a scripting language, so the programs you create have to

do a lot of cumbersome string processing. Plus, with some

of the devices we used, the scripts would return a code

of 0 (completed successfully) even when the command or

parameters contained an error, so we had to add our own

error handling.

The most time-consuming task is that of updating the

firmware on storage array systems and FC switches. With

some products, such updates can change command line

output, so we needed to perform tests in a development

environment before upgrading in production. More recent

storage products and FC switches increasingly offer sup-

port for configuration management software like Ansible,

so there has been progress on device API implementations,

■ Automating storage configuration

Until around 2010, whenever a user requested storage on

IIJ GIO, the engineer responsible for running the storage had

to manually change the storage and FC switch settings. Up

to this point, that only happened infrequently, at most

once a week, so even with the engineers performing these

changes manually, we were quite capable of fulfilling the

lead times set in the service specifications. After 2010,

however, that once a week turned into several times a

week, and then several times a day, and we could tell it

was going to be difficult to sustain things manually, so

we designed and built a system to completely automate

storage configuration changes.

Storage settings can easily be automated with commercially

available applications, but many such applications offer more

than just storage configuration automation features (and are

thus expensive), so we created the storage control system

ourselves. Storage control is performed using scripting

languages like Python and Ruby. When using these sorts of

languages to manage storage configurations, it is generally

preferable to do it via the Storage Management Initiative

Specification (SMI-S, a storage management standard) or a

Figure 4: L2 over L3 Configuration (2017–)

Floor Floor Floor

x N Pod（N<10）
・・・

VxLAN

MLAG
L3

40GbEx2

10GBASE-T

x40
・・・
Racks

x～12

ToR
Box Type

ToR
Box Type

Leaf
Box Type

Leaf
Box TypeVTEP

MLAG
L3

40GbEx2

10GBASE-T

x40
・・・
Racks

ToR
Box Type

ToR
Box Type

Leaf
Box Type

Leaf
Box TypeVTEP

MLAG
L3

40GbEx2

10GBASE-T

x40
・・・
Racks

x～12

ToR
Box Type

ToR
Box Type

Leaf
Box Type

Leaf
Box TypeVTEP

Spine
Box Type

Spine
Box Type

34

3. Focused Research (2)

Vol. 60Dec.2023

© Internet Initiative Japan Inc.

and vendors now offer modules that can be used to man-

age storage using Python and the like, which has made

the programming task much easier than it used to be. From

2010 onward, we have continued to follow the procurement

policies we used for previous generations, but as perfor-

mance requirements increase and the range of storage array

products meeting our selection criteria grows, the number

of different storage products we use is also increasing.

3.7	2020s – Present: Ongoing Evolution
■ Launch of IIJ GIO Infrastructure P2 Gen.2

On October 1, 2021, we launched IIJ GIO Infrastructure

P2 Gen.2 (GIO P2 Gen.2), our next-generation IaaS model,

which fully integrates the public IaaS and private IaaS offerings

developed and provided under the IIJ GIO brand and makes

it easy to migrate systems from on-premises environments.

A key characteristic of GIO P2 Gen.2 is that it uses VMware

as its virtual infrastructure and allows the design concepts

and operational systems of on-premises environments to be

migrated as is, and thus, like GIO P2, continues to target

demand for the migration of systems from on-premises

VMware environments to the cloud. As a successor to GIO

P2, it is also naturally designed to serve as a potential new

home for existing users. With GIO P2 Gen.2, users are free

to create VMs with a minimum of 1vCPU / 4GB memory

from a virtual resource pool, instead of on a per-server basis

like in ordinary private clouds. In other words, users can

migrate the machine specs that they run in their current

environment to GIO P2 Gen.2 as is. This setup means that

users can migrate physical machines and VMs from their

existing environment by using images or performing P2V or

V2V migration. In addition to providing a range of managed

services with components that are essential in corporate IT

environments, such as file servers, Active Directory, and

databases, GIO P2 Gen.2 also abstracts out the hypervisors

and hardware such as servers, storage, and networks, so

users need not worry about differences between devices.

This greatly reduces the user workloads that came with the

GIO Virtualization Platform VW Series, where users had to

perform software updates to deal with vulnerabilities arising

from them managing their hypervisors, and migration tasks

in the case of hardware upgrades. Linking GIO P2 Gen.2

with IIJ’s other various services, such as network services

that provide closed connections to third-party public clouds,

also makes it possible to use the platform in anticipation of

Figure 5: Complete Separate of the Control and Data Planes (2021–)

User System

L3

VPC

Router
VPC Router

Subnet

Host
Virtual Machine

Subnet

Host
Virtual Machine

R

x40
・・・

Cluster

x40
・・・

Cluster

Service Platform

Geneve

x40
・・・

Cluster

Spine
Box Type

Spine
Box Type

Spine
Box Type

Spine
Box Type

Leaf
Box Type

Leaf
Box Type

x40
・・・

Cluster

Spine
Box Type

Spine
Box Type

Spine
Box Type

Spine
Box Type

Leaf
Box Type

Leaf
Box Type

Core
Box Type

Core
Box Type

DCI

S-Spine
Box Type

S-Spine
Box Type

Core
Box Type

Core
Box Type

Edge
Box Type

Edge
Box Type

GW
Box Type

GW
Box Type

Edge
Box Type

Edge
Box Type

GW
Box Type

GW
Box Type

35

© Internet Initiative Japan Inc.

■ Overlay networks using SDN technology

The minimum design requirements for IaaS platforms

that accommodate multiple users are physical resource

sharing that ensures resources are deployed efficiently and

inter-user security. The products on the market offering

virtualization technologies for servers as a user computing

resource were sufficiently mature, but given the need to

ensure interoperability with existing protocols, the imple-

mentation of network virtualization is something that has

only moved ahead with considerable caution. In recent

years, with the improvement of hardware performance

and the development of SDN technology, network virtual-

ization technology has become a viable option in large-scale

networks. We recognized the usefulness of overlay networks,

a type of network virtualization technology, from an early

stage, and we have used them through the GIO platform

generations, selecting reliable technologies in each

instance.

To ensure performance, we previously used network hard-

ware functions to achieve overlay network termination, but

with GIO P2 Gen.2, we switched to doing this using the

virtual switches within the hosts. This, of course, ensured

complete separation between users and also enabled the

complete separation of user systems and the physical infra-

structure systems. This reduced the impact of underlying

system changes on user systems, making it easier to add

new functionality.

The loose coupling with the physical layer is also advanta-

geous when deploying IaaS across multiple sites. As with

a future migration to a public cloud. In addition to providing

Flexible Server Resources (FSR), which let users freely select

resources and configure their system environment just like

with a private cloud, we also continue to provide Dedicated

Server Resources (DSR) equivalent to what was available

on the P2 VW Series using VMware vCenter Server with

full privileges.

For GIO P2 Gen.2’s Flexible Server Resources, we use VMware

Cloud Director (VCD), a product for service providers from

VMWare, and hide the hypervisor (vSphere) layer from the

user. This lets us provide users with flexible resource control

privileges on par with vSphere while allowing IIJ as the

service provider to manage the hypervisor and hardware

lifecycles. This newly defined shared responsibility model

makes it possible for IIJ to manage and operate the hy-

pervisor network. We also provide migration functionality

as a service feature, allowing customers to migrate to the

cloud with minimal downtime and operational overhead.

To operate the hypervisor layer network efficiently, we ad-

opted VMware NSX-T Data Center (NSX-T), which allows

comprehensive integration with vSphere, and significantly

improved the IaaS network. GIO P2 Gen.2 uses NSX-T to

configure an overlay network on top of a Layer 3 IP fabric

underlay network, completely separating out the network

for each tenant and providing it as a VPC (virtual private

cloud). Combining this design with the knowledge we

gained from operating a large-scale server pool with IIJ GIO

has made it possible for us to allocate resources to users

unfettered by the actual physical placement of computing

resources (CPUs, memory, storage).

36

3. Focused Research (2)

Vol. 60Dec.2023

© Internet Initiative Japan Inc.

the existing GIO system, not only can equipment be de-

ployed on a large scale across a small number of locations

in East and West Japan and seamlessly connected, we

also expect it to be easy to distribute equipment on smaller

scales across various locations as a disaster preparedness

measure.

On the other hand, whereas the settings for each device

were previously managed separately due to hardware

limitations, the shift to processing in software removed

these limitations, resulting in a truly huge amount of

configuration information. Since this exceeds what a

human can possibly grasp, to ensure quality, we need

to move away from the conventional practice of having

humans manually make changes. And to ensure services

are available to users in a timely manner, we also need to

move away from static device configuration and enable

dynamic configuration. To achieve these goals, we are

using an orchestrator (based on a commercial product

with missing or additional features developed in-house)

to centrally manage configurations. Centralizing in this

manner makes inter-system processing available to

linked services via APIs as well, and makes it possible to

start related services safely and quickly.

3.8	Conclusion
We’ve taken a look back at IIJ’s 30-year history through a

service infrastructure lens. The service host infrastructure

underpinning IIJ’s various services continues to evolve as

we seek to balance stability and efficiency while keeping

an eye on the relentless march of innovation and adopting

the best technologies to keep up with the times. We mark

IIJ GIO’s 24th anniversary this year, and the platform’s

service lineup continues to expand to meet diverse busi-

ness infrastructure needs. With demand for digital social

infrastructure based on AI technology growing in recent

years, we are working to provide ultra-high-density AI

computing platforms to make this a reality. At IIJ, we will

continue to develop and provide services and fundamental

technologies to serve market needs.

Shinri Kimura

Head of Cloud Services Division 2, Cloud Division, and Director of Technology Development, Cloud Division, IIJ
Since February 2001, Mr. Kimura has been engaged in the development and operation of large-scale service and cloud infrastructure, and
the provision of cloud services. He is also responsible for teams engaged in technology development, human resources development, etc.

37

©Internet Initiative Japan Inc. All rights reserved.
 IIJ-MKTG020-0058

Internet Initiative Japan Inc.

Address: Iidabashi Grand Bloom, 2-10-2 Fujimi, Chiyoda-ku,
Tokyo 102-0071, Japan
Email: info@iij.ad.jp URL: https://www.iij.ad.jp/en/

D
ec

em
be

r 2
02

3
Vo

l.6
0

About Internet Initiative Japan Inc. (IIJ)

IIJ was established in 1992, mainly by a group of engineers who
had been involved in research and development activities related
to the Internet, under the concept of promoting the widespread
use of the Internet in Japan.
IIJ currently operates one of the largest Internet backbones
in Japan, manages Internet infrastructures, and provides
comprehensive high-quality system environments (including
Internet access, systems integration, and outsourcing services,
etc.) to high-end business users including the government and
other public offices and financial institutions.
In addition, IIJ actively shares knowledge accumulated through
service development and Internet backbone operation, and
is making efforts to expand the Internet used as a social
infrastructure.

The copyright of this document remains in Internet Initiative Japan Inc.

(“IIJ”) and the document is protected under the Copyright Law of Japan

and treaty provisions. You are prohibited to reproduce, modify, or make

the public transmission of or otherwise whole or a part of this document

without IIJ’s prior written permission. Although the content of this

document is paid careful attention to, IIJ does not warrant the accuracy and

usefulness of the information in this document.

	Executive Summary
	1.	Periodic Observation Report
	1.1	Overview
	1.2	About the Data
	1.3	Users’ Daily Usage
	1.4	Usage by Port
	1.5	Conclusion

	2. Focused Research (1)
	2.1	Overview
	2.2 Main Communications-related Program Behaviors
	2.2.1	Communications-related Processing in General-		purpose OSes
	2.2.2	VM Network I/Os

	2.3	Research Community Efforts
	2.3.1	Reducing System Call Costs
	2.3.2 More Efficient Packet Passing Between User Space and NICs
	2.3.3	Rethinking Network Stack Design
	2.3.4	Speeding up VM Communications

	2.4	Recent Work at IIJ Research Laboratory
	2.4.1	Integrating New OS Features and Existing Programs
	2.4.2	Speeding up VM I/O

	2.5	Conclusion

	3.	Focused Research (2)
	3.1	Introduction
	3.2	1990s: Where it all Started
	3.3 2000s: Shedding the Dedicated-service-hosts Approach
	3.4 2010s – Present: Type-N, a Next-generation Service Platform
	3.5 2000s: Pioneering IaaS (Infrastructure as a Service)
	3.6	2010s: Cloud Computing Takes Off
	3.7	2020s – Present: Ongoing Evolution
	3.8	Conclusion

