
© Internet Initiative Japan Inc.

Authentication/Authorization with
Cross-Device Flows

3. Focused Research (2)

*1 Cross-Device Flows: Security Best Current Practice (https://datatracker.ietf.org/doc/draft-ietf-oauth-cross-device-security/).

*2 RFC 8628: OAuth 2.0 Device Authorization Grant (https://datatracker.ietf.org/doc/rfc8628/).

3.1 Introduction
The rapid proliferation and functional evolution of smart-

phones continues to change our lives in significant ways.

We now use smartphones in every aspect of our daily

lives. Authentication and authorization, which are crucial

for ensuring that we can use Internet-based services

safely, are no exception. In this article, I explain a smart-

phone-based authentication/authorization method called

cross-device flows*1, something that has been attracting

attention in recent years.

A cross-device flow is an authentication/authorization

method in which the device (e.g., a PC or smart TV) on

which a service is used is separate from the device (e.g.,

a smartphone) that handles the service authentication/

authorization. Say, for instance, that you want to stream

video on your smart TV, but that entering your user ID

and password into the TV’s remote control is awkward,

so you use your smartphone instead.

In this case, the cross-device flow solves the problem of

using a service on a device with a limited input interface.

Cross-device flows are needed in many other situations as

well, with a wide range of use cases being proposed. You

might, for instance, want to use a service via a device on

which you want to avoid entering confidential information,

such as a shared or public device. Or you might want to add

multi-factor authentication to an existing authentication/

authorization flow. Or perhaps you want to perform authen-

tication/authorization on multiple devices using the same

private key, but you want to avoid copying that private key.

A number of cross-device flow standards specifications

exist, including some that are under development, each with

different use cases. Below are some major ones, at which

we will take a closer look.

• OAuth 2.0 Device Flow

• OpenID Connect CIBA Flow

• OID4VP’s Cross Device Flow

• SIOP v2’s Cross-Device Self-Issued OP

• CTAP v2.2’s Hybrid transports

3.2 OAuth 2.0 Device Flow
OAuth 2.0 Device Authorization Grant (RFC8628)*2 is an

OAuth 2.0 authorization flow. It was standardized by the

IETF in 2019. It is commonly called Device Flow. This

cross-device flow was designed to allow other devices to

be used to assist with applications running on devices

with limited user input capabilities, such as smart TVs,

digital photo frames, and printers. The case of using a video

streaming app on a smart TV mentioned in the previous

section is a prime example of this.

Device Flow is an authorization flow. The protocol is designed

such that an authorization server issues access tokens that

allow client applications to use a service (usually provided

as an API). Since it is not an authentication flow, the Device

Flow specification does not encompass functionality by

which client applications can authenticate end users (func-

tionality for identifying end users, such as the issuance of ID

tokens). If you want to perform authentication as well, you

need to combine it with something like OpenID Connect.

18

3. Focused Research (2)

Vol. 59Aug.2023

© Internet Initiative Japan Inc.

*3 RFC 6749 - The OAuth 2.0 Authorization Framework (https://datatracker.ietf.org/doc/rfc6749/).

Figure 1 is an example of the Device Flow authorization

flow. In OAuth 2.0, the application that uses the service is

called the client, and the application that performs authori-

zation (usually a web browser) is called the user agent.

1. The end user launches the client on the device.

2. The client sends an authorization request to the authori-

zation server (a).

3. In response, the authorization server returns a device

verification code (device code), an end user verification

code (user code), and a verification URL for the end

user to access.

4. The client displays on screen the user code and

verification URL that it received. Verification URLs

are usually displayed in the form of QR codes.

5. The end user scans the QR code with a smartphone

or the like (b) to obtain the verification URL.

6. The user visits the verification URL via the user

agent. The user is asked to authenticate and thus

signs in.

7. After signing in, a user code is displayed on screen.

(In some cases, the end user is required to enter the

user code).

8. While the end user is working with the user agent,

the client repeatedly sends access token requests to

the authorization server. The requests include the

device code as a parameter.

9. The end user confirms that the user code displayed

by the client and the user code displayed by the user

agent match, confirms any other notes displayed,

and then approves (c).

10. The authorization server issues an access token and

returns it to the client in response to the access

token request (d).

A major difference between Device Flow and other OAuth

2.0 authorization flows is how the front channel is imple-

mented. The term front channel refers to the link between the

client and the user agent. Authorization Code Flow as defined

in the OAuth 2.0 Authorization Framework (RFC6749)*3 is

the most commonly used OAuth 2.0 authorization flow and

works by redirecting the front channel (using HTTP redirects

or redirects that use inter-application linking mechanisms

such as deep links (Universal Links on iOS and App Links on

Android)). But with Device Flow, redirects cannot be used

because the client and user agent run on different devices, so

instead, the end user acts as an intermediary by scanning a

QR code or reading off and manually entering a code.

Creating a Device Flow front channel is simple and does not

require specialized hardware, so it is easy to implement, yet

it offers less-than-robust security in some respects. It may

be susceptible to access token theft via social engineering

or man-in-the-middle attacks, and users could be redirected

to malicious sites. So it’s generally thought that Device

Flow should be avoided for clients that access sensitive or

important data.

Authorization server

End user Client

(a) Device authorization
 request

(b) QR code scanned

(c) Approves

(d) Token issued

Figure 1: Example of Device Flow-based Authorization Flow

19

© Internet Initiative Japan Inc.

approves the message. This offers a more reliable way of

identifying people and obtaining consent than asking for

a signature or PIN.

Let’s take a closer look at CIBA to see how authentication

and authorization are implemented (Figure 2). First, some

terminology. In CIBA, the device that runs the client is called

the consumption device, and the device on which the end

user performs authentication is called the authentication

device. The authentication device is typically a smartphone.

CIBA does not define a term for the application that performs

the permissioning operations on the authentication device,

but for convenience, I will refer to it as the authentication

application. CIBA is an OpenID Connect authentication/

authorization flow, so it issues an ID token together with

an access token. The server that issues these is called the

OpenID Provider (OP).

1. The client sends an authentication request to the OP

(a). The request contains a parameter identifying the

end user.

2. The OP returns an authentication request ID in

response to the authentication request.

3. The OP searches the end user database for an

authentication device associated with the end user

and then sends a message requesting consent to

that authentication device (b). Push notifications

(Apple Push Notification Service or Firebase Cloud

Messaging) are often used here.

4. The authentication device that receives the consent

request starts the authentication application and

displays the message on screen.

5. The end user chooses to either consent or decline,

and this response is sent to the OP (c).

6. If the end user consents, the OP will issue an access

token and an ID token.

7. The client polls the token endpoint and obtains a token

(d). The request here includes the authentication

request ID as a parameter. If the client is able to expose

a notifications endpoint, there is also the option of

receiving notifications when a token is issued without

any polling.

3.3 OpenID Connect CIBA Flow
OpenID Connect Client-Initiated Backchannel Authentication

Flow*4 is an OpenID Connect authentication/authorization

flow, abbreviated as CIBA. It was standardized by the

OpenID Foundation in 2021. Like Device Flow, CIBA is a

cross-device flow that allows the client that uses a service

to be on a different device from the one that handles

authorization. It is conceptually very different, however.

With Device Flow, a single end user operates both devices

in most cases, but CIBA was designed with cases in which

each device is operated by a different user in mind. This

opens up the following sort of use cases for CIBA.

• When a call center rep needs to obtain information from a

customer over the phone. In this case, the customer gives

their member number to the rep, who then searches for it

in a customer management system. A notification is then

sent to the customer’s smartphone, with a prompt for

permission to disclose personal information. The customer

management system displays the customer’s information

to the rep only after the customer provides permission.

This mechanism can prevent information breaches caused

by staff viewing customer information without permission.

• When approving credit card payments at a store. In this

case, when a customer tries to pay via credit card at the

cash register, a notification appears on the customer’s

smartphone with a message confirming the payment

details. The payment is completed once the customer

*4 OpenID Connect Client-Initiated Backchannel Authentication Flow - Core 1.0 (https://openid.net/specs/openid-client-initiated-backchannel-authentication-core-1_0.html).

Figure 2: Example of CIBA Authentication/Authorization Flow

OP

End user Client

(a) Authentication
 request

(b) Push notification

(c) Approves

(d) Token issued

20

3. Focused Research (2)

Vol. 59Aug.2023

© Internet Initiative Japan Inc.

The CIBA specification does not define a protocol for com-

munications between the OP and the authentication device.

Both the communications method and message specifica-

tions are left up to the implementer.

CIBA differs considerably from Device Flow and the other

cross-device flows discussed below in that it does not use

the front channel; everything is completed via the back

channel. The back channel is where interactions between

the client and the OP and between the authentication

application and the OP occur. Because there is no direct

interaction between the client and the authentication ap-

plication, it supports use cases in which the consumption

device and authentication device are separated geographi-

cally, as in the call center example above.

Another major feature of CIBA is that it is a client-initiated

authentication/authorization flow. With other OAuth/OpenID

Connect flows, when a client attempts to access end user

resources, authentication/authorization is carried out a

single time and the client then holds the token for a lengthy

period of time. CIBA makes it possible to issue short-term

tokens for each client request, enabling more flexible

resource protection.

CIBA is thus quite valuable in that it supports use cases

that can be difficult to handle with other authentication/

authorization flows. It is attracting attention from the

financial industry in particular, and it has also been in-

corporated into FAPI (an OAuth/OpenID Connect profile

for areas that require strong security, such as finance)*5,

which the OpenID Foundation is working to popularize*6.

3.4 OID4VP’s Cross Device Flow
This section describes OpenID for Verifiable Presentations*7

(abbreviated OID4VP), currently being developed by the

OpenID Foundation. Before diving into OID4VP, I will briefly

explain verifiable credentials, which are used in OID4VP.

Verifiable credentials (VCs) are a verifiable form of digital

credentials. They include, for example, digitized versions

of passports, graduation certificates, and employee ID

cards*8. The issuer digitally signs the credential, and they

can be verified by third parties. Multiple VC standards

exist, including ISO/IEC 18013-5 Mobile driving license

(mDL)*9 and W3C Verifiable Credentials*10, which provides

a general-purpose data format.

VCs are typically stored in an application called the

credential holder’s wallet. As mDL and W3C Verifiable

Credentials are only VC data specifications, however,

they do not define a protocol for obtaining credentials from

an issuer and storing them in a wallet, nor a protocol for

presenting credentials from a wallet to a verifier. The design

of these protocols is up to the implementer. One example

is SMART Health Cards (SHC)*11, a specification for handling

VCs (W3C Verifiable Credentials format) for medical infor-

mation (incidentally, the Covid-19 vaccination certificates

provided by Japan’s Digital Agency are based on SHC*12).

The OpenID Foundation is working to standardize these

protocols in an effort to promote the adoption of VCs.

This is in the form of OpenID for Verifiable Credential

Issuance (abbreviated OID4VCI)*13, a protocol for issuing

VCs, and OID4VP, a protocol for presenting VCs. Both

OID4VCI and OID4VP are independent of the VC data

*5 FAPI 2.0 Security Profile (https://openid.bitbucket.io/fapi/fapi-2_0-security-profile.html).

*6 FAPI: Client Initiated Backchannel Authentication Profile (https://bitbucket.org/openid/fapi/src/master/Financial_API_WD_CIBA.md).

*7 OpenID for Verifiable Presentations (https://openid.net/specs/openid-4-verifiable-presentations-1_0.html).

*8 Verifiable Credentials Use Cases (https://www.w3.org/TR/vc-use-cases/).

*9 ISO/IEC 18013-5:2021 —Personal identification —ISO-compliant driving licence —Part 5: Mobile driving licence (mDL) application (https://www.iso.org/stan-

dard/69084.html).

*10 Verifiable Credentials Data Model v1.1 (https://www.w3.org/TR/vc-data-model/).

*11 SMART Health Cards (https://smarthealth.cards/en/).

*12 Digital Agency, “FAQ: Contents of vaccination certificates” (https://www.digital.go.jp/policies/vaccinecert/faq_06/, in Japanese).

*13 OpenID for Verifiable Credential Issuance (https://openid.bitbucket.io/connect/openid-4-verifiable-credential-issuance-1_0.html).

21

© Internet Initiative Japan Inc.

specification and can be used with mDL, W3C Verifiable

Credentials, or other formats.

So, we now turn to the main focus of this section, OID4VP.

What does it mean to present a VC? Imagine a situation

in which you are asked to provide age verification to

purchase alcohol. With a physical ID, you have to present

it face-to-face to a clerk at a brick-and-mortar store. VCs,

on the other hand, are electronic data, so the interaction

does not have to be face-to-face. You can use them for

online shopping.

1. You put liquor in your cart on the liquor store website

and click the purchase button. The site asks you to

present a VC proving you are at least 20 years old.

2. When you click the submit button, your wallet is

launched via a deep link, and a message asking

if your VC can be presented to the liquor store is

displayed.

3. If you consent, you are redirected back to the liquor

store website, and your VC is passed to the liquor

store. At this point, it is possible to use a mechanism

called selective disclosure to ensure that the store

only sees what it needs—your date of birth—and

none of the other information in your VC.

4. The liquor store website verifies your VC, checks

your age, and allows you to make the purchase if

you are at least 20 years old.

The above is known as a same-device flow. This is when

the software running OID4VP and the wallet are on the

same device, that is, when inter-application redirects are

possible. OID4VP also accommodates cross-device flows.

In the previous example, this corresponds to the use of a

VC stored in a smartphone wallet when shopping online

on a PC. Instead of redirects, cross-device flows use QR

codes to connect the two devices.

Let’s take a closer look at OID4VP’s cross-device flow

(Figure 3). In OID4VP, the end user who has the VC is

called the holder, the person to whom the VC is presented

is called the verifier, and the data format used to present

the VC to the verifier is called the VP token. A VP token

can contain multiple VCs. The verifier’s application needs

a server that will receive HTTPS requests.

1. The holder accesses the verifier’s services via a PC

(a).

2. The verifier application converts the request acqui-

sition URI into a QR code, which is displayed on

screen.

3. The holder scans the QR code with a smartphone

wallet (b).

4. The wallet accesses the verification server’s request

acquisition URI (c).

5. The verification server returns the details of the re-

quest in response. The request contains a detailed

description of the requirements of the VC that will

be presented.

6. In accord with the request received, the wallet

displays a message asking the holder for consent re-

garding the content of the VC that will be presented.

7. The holder reviews the content and consents to the

VC being presented.

8. The wallet sends the VP token to the verification

server (d).

9. Once the verifier verifies the VC, the holder can con-

tinue to use the verifier’s services via the PC.

With OID4VP’s cross-device flow, all communication

between the verifier and the wallet after the URI is initially

acquired using a QR code is assumed to take place over

the Internet. OpenID for Verifiable Presentations over

BLE*14 is an extension of this currently being developed

to facilitate the use of OID4VP in environments where the

*14 OpenID for Verifiable Presentations over BLE (https://openid.bitbucket.io/connect/openid-4-verifiable-presentations-over-ble-1_0.html).

Figure 3: Cross-Device Flow Authentication Example

Holder

Verifier

Holder’s
smartphone

(a) Accesses service

(b) Scans QR code

(c) Request acquisition

(d) VP token presented

22

3. Focused Research (2)

Vol. 59Aug.2023

© Internet Initiative Japan Inc.

Internet is unavailable. Possible use cases for this include

patrons presenting e-tickets in VC form wirelessly over

BLE (Bluetooth Low Energy) at venues where smartphones

are unable to establish a stable Internet connection, such

as large concert venues or below-ground entertainment

venues.

The potential use cases for VCs span all kinds of everyday

scenarios. Once the OID4VP standardization process is

complete and it truly starts to become widespread, we

will no doubt encounter this cross-device flow in many

aspects of our daily lives.

3.5 SIOPv2’s Cross-Device Self-Issued OP
Self-Issued OpenID Provider v2*15 (abbreviated SIOPv2) is a

specification being developed by the OpenID Foundation. It

extends OpenID Connect to allow end users to issue ID

tokens themselves. The previous specification (SIOP sans

v2) was part of the OpenID Connect Core 1.0*16 specification,

whereas SIOPv2 is now being standardized as an indepen-

dent specification.

With OpenID Connect, an OpenID Provider (OP) issues an

ID token that proves the end user’s identity, and this is

presented to any third party (the Relying Party (RP)) who

wants to authenticate the end user. Social login (logging

in via an account with Google, Apple, etc.) is a typical

example of how this is used with web services. In these

cases, Google or Apple or the like is the OP, and the web

service is the RP. With SIOP, the end user acts as the OP

and issues their own ID token.

The advantage of SIOP is that it allows end users to

manage their own IDs, away from the mega platforms’

centralized identity management. With social login, the OP

is able to collect information on which RP was used. And if

a user’s OP account is suspended, this will also render the

RP’s service unavailable to that user. The idea of SSI (Self-

Sovereign Identity) is beginning to gain traction as a means

of overcoming these undesirable aspects of centralized

identity management. The SIOP specification is designed

to make OpenID Connect work with SSI.

The SIOPv2 protocol defines two flows. One is the conven-

tional Same-Device Self-Issued OP, in which the RP client

application and the OP run on the same device. Redirects

are used to link the RP and OP. The other is Cross-Device

Self-Issued OP, which was newly added in SIOPv2. Here,

the OP runs on a different device (usually a smartphone).

Let’s take a look at the Cross-Device Self-Issued OP flow

(Figure 4).

1. The end user accesses the RP (a).

2. The RP displays the self-issued request URI on

screen, usually as a QR code.

3. The end user scans the QR code with a smartphone

(b). The self-issued request URI is a deep link that

launches the OP.

4. The OP is launched via the deep link. A message

requesting permission to issue an ID token is displayed

on screen.

5. Once the end user approves, the OP sends the issued

ID token to the RP’s backend server (c).

In addition to Cross-Device Self-Issued OP, SIOPv2 is

expected to have the following enhancements over the

previous specification.

*15 Self-Issued OpenID Provider v2 - draft 12 (https://openid.bitbucket.io/connect/openid-connect-self-issued-v2-1_0.html).

*16 Final: OpenID Connect Core 1.0 incorporating errata set 1 (https://openid.net/specs/openid-connect-core-1_0.html).

Figure 4: Example of Cross-Device Self-Issued OP Authentication

End user

RP

End user’s
smartphone

(a) Accesses service

(b) Scans QR code

(c) Token issued

23

© Internet Initiative Japan Inc.

*17 User Authentication Specifications Overview - FIDO Alliance (https://fidoalliance.org/specifications/).

*18 Web Authentication: An API for accessing Public Key Credentials - Level 3 (https://www.w3.org/TR/webauthn-3/).

*19 Client to Authenticator Protocol (CTAP) (https://fidoalliance.org/specs/fido-v2.2-rd-20230321/fido-client-to-authenticator-protocol-v2.2- rd-20230321.html).

*20 Terms - passkeys.dev (https://passkeys.dev/docs/reference/terms/#cross-device-authentication-cda).

*21 White Paper: Multi-Device FIDO Credentials - FIDO Alliance (https://fidoalliance.org/white-paper-multi-device-fido-credentials/).

*22 Passkeys (Passkey Authentication) (https://fidoalliance.org/passkeys/).

the use of external authenticators that are not built in but

instead connected to a device via USB or NFC.

CTAP v2.2, currently in the drafting phase, proposes a

protocol called hybrid transports for using smartphones as

external authenticators. In short, this would allow the use

of a smartphone for authentication when signing in to a

web service on a PC or the like. A number of operators

already offer similar solutions, but they are all proprietary

implementations. The FIDO Alliance is endeavoring to stan-

dardize the protocol. Authentication using hybrid transports

will apparently be called FIDO Cross-Device Authentication

flow (CDA)*20. Incidentally, there is also the somewhat similar

sounding Multi-Device FIDO Credentials*21. This provides

a mechanism for synchronizing credentials (authentication

credentials) across an end user’s own devices, and is also

known as Passkeys*22. CDA and Passkeys are separate

specifications, and hybrid transports can be used between

PCs and smartphones even when credentials are not

synchronized via Passkeys.

Figure 5 shows an example sign-in procedure using hybrid

transports.

• The end user’s public key fingerprint is what has so far

been used as the end user identifier included in the ID

token. In addition to this, v2 will also allow the use of

DIDs (Decentralized Identifiers). This will allow the use of

an external verifiable data registry.

• When combined with OID4VP, it will allow VCs to be

presented together with ID tokens. By verifying the VC,

the RP will be able to associate the ID token with a VC

issued by a trusted issuer. Since VC verification is completed

on the RP (i.e., verifier) side, no information is collected

by the VC issuer.

3.6 CTAP v2.2’s Hybrid Transports
FIDO2*17 is an authentication technology for passwordless

sign-in to web services put forward by the FIDO Alliance.

FIDO2 consists of W3C Web Authentication (WebAuthn)*18

and corresponding Client to Authenticator Protocols

(CTAP)*19. The WebAuthn specification is standardized

by the W3C in collaboration with the FIDO Alliance. It is

designed to facilitate web service sign-ins using biometric

authentication entities, called authenticators, and authenti-

cation via security keys and the like. The CTAP specification

is standardized by the FIDO Alliance. It is designed to allow

End user

Tunnel service

Web service

End user’s
smartphone

(a) Accesses service

(f) Signs in

(b) Scans QR code (c) BLE
 advertisement

(d) Tunnel connection

(e) Sends credentials

(d) Tunnel connection

Figure 5: Example of Sign-in Procedure using Hybrid Transports

24

3. Focused Research (2)

Vol. 59Aug.2023

© Internet Initiative Japan Inc.

1. Using a PC, the user opens the sign-in screen on a

FIDO2-enabled website (a).

2. A dialog box for selecting the authenticator is displayed.

The user selects “Smartphone”.

3. A QR code appears on screen.

4. The user scans the QR code using their smartphone

(b).

5. The authentication application on the smartphone

starts up.

6. To reduce the risk of phishing, at this point BLE

advertisement is used to confirm that the PC and

smartphone are in close proximity to each other (c).

7. The end user provides f ingerprint or other

authentication.

8. WebSocket is used to establish a reliable, secure

communication link between the authentication

application on the smartphone and the web browser

on the PC (d). The tunnel specification is up to the

implementer.

9. The authenticator application provides the credentials

to the web browser through the tunnel (e).

10. The web browser uses the credentials to perform a

WebAuthn sign-in (f).

Once the tunnel link is established, the QR code scanning

step is skipped in subsequent authentications.

FIDO2 is specially designed to replace website sign-in

procedures, so it can be used in combination with OAuth/

OpenID Connect. Hence, it is expected that cross-device

flows based on hybrid transports could be adopted for most

of the areas covered by OAuth/OpenID Connect. While it is

still in the drafting phase, the specification does have great

potential when it goes into practical use.

3.7 Conclusion
In this chapter, I have introduced some cross-device flow

specifications, both standardized ones and some still being

drafted. Each has its own characteristics and target use

cases. Yet they all use the features and functionality of

smartphones (high penetration rate, always-on mobile,

advanced biometric authentication, QR code support, push

notification support, etc.) with the aim of providing safer,

easier-to-use authentication and authorization flows. As

cross-device flows become more prevalent, we can expect

the security of online services and transactions to improve,

providing an even better experience for users.

Kenzo Yotsuya

Research Laboratory, Internet Initiative Japan Inc.
Mr. Yotsuya is engaged in research and development on technologies related to next-generation authentication and authorization.

25

	3.	Focused Research (2)
	3.1	Introduction
	3.2	OAuth 2.0 Device Flow
	3.3	OpenID Connect CIBA Flow
	3.4	OID4VP’s Cross Device Flow
	3.5	SIOPv2’s Cross-Device Self-Issued OP
	3.6	CTAP v2.2’s Hybrid Transports
	3.7	Conclusion

